Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

High Load Lean SI-Combustion Analysis of DI Methane and Gasoline Using Optical Diagnostics with Endoscope

2021-09-05
2021-24-0046
Homogeneous lean spark-ignited combustion is known for its thermodynamic advantages over conventional stoichiometric combustion but remains a challenge due to combustion instability, engine knock and NOx emissions especially at higher engine loads above the naturally aspirated limit. Investigations have shown that lean combustion can partly suppress knock, which is why the concept may be particularly advantageous in high load, boosted operation in downsized engines with high compression ratios. However, the authors have previously shown that this is not true for all cases due to the appearance of a lean load limit, which is defined by the convergence of the knock limit and combustion stability limit. Therefore, further research has been conducted with the alternative and potentially renewable fuel methane which has higher resistance to autoignition compared to gasoline.
Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Technical Paper

Experimental Investigation of Methane Direct Injection with Stratified Charge Combustion in Optical SI Single Cylinder Engine

2016-04-05
2016-01-0797
This paper assesses methane low pressure direct injection with stratified charge in a SI engine to highlight its potential and downsides. Experiments were carried out in a spark ignited single cylinder optical engine with stratified, homogeneous lean and stoichiometric operational mode, with focus on stratified mode. A dual coil ignition system was used in stratified mode in order to achieve sufficient combustion stability. The fuel injection pressure for the methane was 18 bar. Results show that stratified combustion with methane spark ignited direct injection is possible at 18 bar fuel pressure and that the indicated specific fuel consumption in stratified mode was 28% lower compared to the stoichiometric mode. Combustion and emission spectrums during the combustion process were captured with two high-speed video cameras. Combustion images, cylinder pressure data and heat release analysis showed that there are fairly high cycle-to-cycle variations in the combustion.
Technical Paper

Methane Direct Injection in an Optical SI Engine - Comparison between Different Combustion Modes

2019-01-15
2019-01-0083
Natural gas, biogas, and biomethane are attractive fuels for compressed natural gas (CNG) engines because of their beneficial physical and chemical characteristics. This paper examines three combustion modes - homogeneous stoichiometric, homogeneous lean burn, and stratified combustion - in an optical single cylinder engine with a gas direct injection system operating with an injection pressure of 18 bar. The combustion process in each mode was characterized by indicated parameters, recording combustion images, and analysing combustion chemiluminescence emission spectra. Pure methane, which is the main component of CNG (up to 98%) or biomethane (> 98 %), was used as the fuel. Chemiluminescence emission spectrum analysis showed that OH* and CN* peaks appeared at their characteristic wavelengths in all three combustion modes. The peak of OH* and broadband CO2* intensities were strongly dependent on the air/fuel ratio conditions in the cylinder.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
X