Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Journal Article

Eco-Driving System for Energy Efficient Driving of an Electric Bus

2015-04-14
2015-01-0158
This paper presents the design of an Eco-Driving Assistant System (EDAS) in which the main goal is to minimize the energy use of battery electric vehicles, in particular, vehicles utilized for public transportation. The system optimizes the speed profile of a real route schedule while satisfying the constraints imposed on speed and time. It includes a driver feedback and a driver scoring GUI which allows the driver improving his/her driving skills and comparing him/herself to a “theoretical perfect driver”. The system also includes a backward simulator that generates information related to the vehicle operation under the particular route to be optimized. The output information from the simulator is used as an input to the optimization algorithm. The simulator was validated using real data from a battery electric vehicle. The EDAS system was tested for three different driving profiles and energy consumption reductions of up to 30.33% were achieved.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Conceptualization and Implementation of an AWD Parallel Hybrid Powertrain Concept

2013-04-08
2013-01-1448
The Deep Orange [1] initiative is an integral part of the automotive graduate program at Clemson University International Center for Automotive Research. The initiative was developed to provide the graduate students with hands-on experience of the knowledge attained in the various engineering disciplines and related disciplines (such as marketing and human factors psychology). For the 3rd edition of Deep Orange, the goal was to develop a blank sheet hybrid mainstream sports car concept targeted towards the Generation Y (Gen Y) market segment. The objective of this paper is to elaborate on the overall development process and the technology that was created and integrated. A unique all-wheel-drive (AWD) parallel hybrid concept was derived based on extensive analyses of the Gen Y market. The data revealed that Gen Y, as an environmentally conscious generation, is willing to invest in sustainable powertrain technologies and also has a significant interest in all-wheel-drive.
Technical Paper

An Immersive Vehicle-in-the-Loop VR Platform for Evaluating Human-to-Autonomous Vehicle Interactions

2019-04-02
2019-01-0143
The deployment of autonomous vehicles in real-world scenarios requires thorough testing to ensure sufficient safety levels. Driving simulators have proven to be useful testbeds for assisted and autonomous driving functionalities but may fail to capture all the nuances of real-world conditions. In this paper, we present a snapshot of the design and evaluation using a Cooperative Adaptive Cruise Control application of virtual reality platform currently in development at our institution. The platform is designed so to: allow for incorporating live real-world driving data into the simulation, enabling Vehicle-in-the-Loop testing of autonomous driving behaviors and providing us with a useful mean to evaluate the human factor in the autonomous vehicle context.
Technical Paper

Battery Electric Bus Simulator - A Tool for Energy Consumption Analysis

2014-09-30
2014-01-2435
This paper presents the design, implementation and validation of a forward simulator for a battery electric bus, developed in MATLAB/Simulink. This simulator allows performing energy consumption analyses for different bus routes. In addition, a user can modify some parameters that affect the powertrain operation to understand their influence in the energy consumption of the bus. These analyses allow the electric bus manufacturers to adapt their powertrain designs and control strategies for different transit agencies with different routes and energy requirements. The simulator was validated using real data from a battery electric bus. The results showed a good correlation between the real and the simulated data. In particular, the absolute error between the real and the simulated State of Charge (SOC), which is one of the most important parameters for this kind of vehicles, was 3.24%.
Technical Paper

A Voice and Pointing Gesture Interaction System for On-Route Update of Autonomous Vehicles’ Path

2019-04-02
2019-01-0679
This paper describes the development and simulation of a voice and pointing gesture interaction system for on-route update of autonomous vehicles’ path. The objective of this research is to provide users of autonomous vehicles a human vehicle interaction mode that enables them to make and communicate spontaneous decisions to the autonomous car, modifying its pre-defined autonomous route in real-time. For example, similar to giving directions to a taxi driver, a user will be able to tell the car «Stop there» or «Take that exit». In this way, the user control/spontaneity vs interaction flexibility dilemma that current autonomous vehicle concepts have, could be solved, potentially increasing the user acceptance of this technology. The system was designed following a level structured state machine approach. The simulations were developed using MATLAB and VREP, a robotics simulation platform, which has accurate vehicle and sensor models.
X