Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Regenerative Braking Control Development for P2 Parallel Hybrid Electric Vehicles

2017-03-28
2017-01-1149
Regenerative braking in hybrid electric vehicles is an essential feature to achieve the maximum fuel economy benefit of hybridization. During vehicle braking, the regenerative braking recuperates its kinetic energy, otherwise dissipated into heat due to friction brake, into electrical energy to charge the battery. The recuperation is realized by the driven wheels propelling, through the drivetrain, the electric motor as a generator to provide braking while generating electricity. “Rigid” connection between the driven wheels and the motor is critical to regenerative braking; otherwise the motor could drive the input of the transmission to a halt or even rotating in reverse direction, resulting in no hydraulic pressure for transmission controls due to the loss of transmission mechanical oil pump flow.
Technical Paper

An Investigation into the Traction and Anti-Lock Braking System Control Design

2020-04-14
2020-01-0997
Wheel slip control is crucial to active safety control systems such as Traction Control System (TCS) and Anti-lock Braking System (ABS) that ensure vehicle safety by maintaining the wheel slip in a stable region. For this reason, a wide variety of control methods has been implemented by both researchers and in the industry. Moreover, the use of new electro-hydraulic or electro-mechanical brakes, and in-wheel electric motors allow for a more precise wheel slip control, which should further improve the vehicle dynamics and safety. In this paper, we compare two methods for wheel slip control: a loop-shaping Youla parametrization method, and a sliding mode control method. Each controller is designed based on a simple single wheel system. The benefits and drawbacks of both methods are addressed. Finally, the performance and stability robustness of each controller is evaluated based on several metrics in a simulation using a high-fidelity vehicle model with several driving scenarios.
X