Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Control System Development for the Dual Drive Hybrid System

2009-04-20
2009-01-0231
Automotive manufacturers continue to move further toward powertrain electrification. There are already many hybrid electric vehicles on the market that are based on a variety of system architectures. Ford Motor Company has investigated a new Dual Drive configuration that promises to overcome some of the attribute deficiencies associated with current architectures. The primary objective of this development project was to demonstrate the fuel economy potential of this system in a vehicle. To accomplish this objective, the team used an internally developed, formal Controls Development Process (CDP) for the control system design and validation. This paper describes the development of the vehicle control system in the context of this process.
Journal Article

Optimal Tire Force Control & Allocation for Longitudinal and Yaw Moment Control of HEV with eAWD Capabilities

2017-03-28
2017-01-1558
Hybrid Electric Vehicles (HEV) offer improved fuel efficiency compared to their conventional counterparts at the expense of adding complexity and at times, reduced total power. As a result, HEV generally lack the dynamic performance that customers enjoy. To address this issue, the paper presents a HEV with eAWD capabilities via the use of a torque vectoring electric rear axle drive (TVeRAD) unit to power the rear axle. The addition of TVeRAD to a front wheel drive HEV improves the total power output. To further improve the handling characteristics of the vehicle, the TVeRAD unit allows for wheel torque vectoring at the rear axle. A bond graph model of the proposed drivetrain model is developed and used in co-simulation with CarSim. The paper proposes a control system which utilizes tire force optimization to allocate control to each tire. The optimization algorithm is used to obtain optimal tire force targets to at each tire such that the targets avoid tire saturation.
X