Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mass Efficient Front Crush Can Design

2011-04-12
2011-01-0769
Crush cans are used as replaceable energy absorbing devices that minimize the damage to the front motor compartment main structural rails during a low speed crash event. This is done in an effort to reduce insurance repair costs, which is especially important in Europe where DANNER/TIC insurance ratings drive consumer cost of ownership and may influence the purchase selection. There are multiple approaches to crush can designs and methods of attachment to the motor compartment rails. One such approach is to utilize a “stick-in” design where the crush can is inserted into the rail section then bolted from the sides. Such designs typically require extra back-up brackets inside the main rails to help provide an adequate reaction structure that allows the desired crush initiation to occur within the can and prevent premature yielding in the main rails during a low speed crash incident. These added brackets, however, translate into additional mass and cost to the vehicle.
Technical Paper

Formability Characterization of 3rd Generation Advanced High-Strength Steel and Application to Forming a B-Pillar

2021-04-06
2021-01-0267
The objective of this study was to assess the formability of two 3rd generation advanced high strength steels (3rd Gen AHSS) with ultimate strengths of 980 and 1180 MPa and evaluate their applicability to a structural B-Pillar for a mid-sized sport utility vehicle. The constitutive behavior including strain-rate effects and formability were characterized to generate the material models for use within AutoForm R8 software to design the B-pillar tooling and forming process. An extended Bressan-Williams instability model was able to deterministically predict the forming limit curves obtained using Marciniak tests. The tooling for the representative B-pillar was designed and fabricated with Bowman Precision Tooling and forming trials conducted for both 3rd Gen steels that had a thickness of 1.4 mm.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
X