Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control

2018-04-03
2018-01-0193
It is challenging to develop highly efficient and clean engines while meeting user expectations in terms of performance, comfort, and drivability. One of the critical aspects in this regard is combustion noise control. Combustion noise accounts for about 40 percent of the overall engine noise in typical turbocharged diesel engines. The experimental investigation of noise generation is difficult due to its inherent complexity and measurement limitations. Therefore, it is important to develop efficient numerical strategies in order to gain a better understanding of the combustion noise mechanisms. In this work, a novel methodology was developed, combining computational fluid dynamics (CFD) modeling and genetic algorithm (GA) technique to optimize the combustion system hardware design of a high-speed direct injection (HSDI) diesel engine, with respect to various emissions and performance targets including combustion noise.
Technical Paper

An Investigation of the Engine Combustion Network ‘Spray B’ in a Light Duty Single Cylinder Optical Engine

2018-04-03
2018-01-0220
Engine Combustion Network promotes fundamental investigations on a number of different spray configurations with the goal of providing experimental results under highly controlled conditions for CFD validation. Most of the available experiments up to now have been obtained in spray vessels, which miss some of the interactions governing spray evolution in the combustion chamber of an engine, such as the jet wall interaction and the transient conditions in the combustion chamber. The main aim of the present research is to compare the results obtained with a three-hole, 90 μm injector, known as ECN’s Spray B, in these constant-volume vessels and more recent Heavy-Duty engines with those obtained in a Light Duty Single Cylinder Optical Engine, under inert and reactive conditions, using n-dodecane. In-cylinder conditions during the injection were estimated by means of a 1-D and 0-D model simulation, accounting for heat transfer and in-cylinder mass evolution.
Technical Paper

A Procedure to Achieve 1D Predictive Modeling of Turbochargers under Hot and Pulsating Flow Conditions at the Turbine Inlet

2014-04-01
2014-01-1080
Nowadays turbocharging the internal combustion engine has become an essential tool in the automotive industry to meet downsizing technique requirements. In that context turbocharger unsteadiness is huge since both turbine and compressor work under high pulsating flow conditions, being turbocharger behavior prediction more difficult but still key for matching and predicting ICE performance. The well understanding and modeling of the occurring physical phenomena during turbocharger unsteady and off-design operation seems crucial. In this paper three small radial turbines used in turbochargers from passenger car applications have been tested under high temperature and pulsating flow conditions on the turbine side. A gas stand and a rotary valve installed on the turbine inlet have been used to reproduce pulses with desired characteristics. A beam-forming technique for pressure wave's decomposition has been used to analyze turbine performance in detail.
Technical Paper

Analysis of the Load Effect on the Partially Premixed Combustion Concept in a 2-Stroke HSDI Diesel Engine Fueled with Conventional Gasoline

2014-04-01
2014-01-1291
Partially Premixed Combustion (PPC) of fuels in the gasoline octane range has proven its potential to achieve simultaneous reduction in soot and NOX emissions, combined with high indicated efficiencies, while still retaining control over combustion phasing with the injection event. However, the octane range where the ignition properties of a given fuel are optimum depends on the engine running conditions. Thus, low octane fuels present problems for extending the ignition delay at medium to high engine loads; while too high octane fuels have ignition problems at low engine loads. Two-stroke engines arise as a promising solution to extend the load range of the PPC concept, since it intrinsically provides equivalent torque response with only half the IMEP required in a four-stroke engine.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

Numerical Optimization of the Combustion System of a HD Compression Ignition Engine Fueled with DME Considering Current and Future Emission Standards

2018-04-03
2018-01-0247
A genetic algorithm (GA) optimization methodology is applied to the design of the combustion system of a heavy-duty (HD) Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional diffusion-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric combustion system coupled with a three way catalyst (TWC) to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The GA was linked to the KIVA CFD code and an automated grid generation tool to perform a single-objective optimization. The target of the optimizations is to improve net indicated efficiency (NIE) while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
Technical Paper

Evaluation of the Potential Benefits of an Automotive, Gasoline, 2-Stroke Engine

2015-04-14
2015-01-1261
In the present paper, the use of a 2-stroke (2S) concept in an automotive gasoline engine is evaluated. In a first stage, the engine architecture chosen is discussed. Taking into account the requirements in gas exchange processes, a uniflow scavenging design was retained (intake ports in the cylinder, controlled by the piston; exhaust valves in the cylinder head, controlled by a Variable Valve Timing, VVT, system), performed by an external blower driven by the crankshaft. To avoid any fuel short-circuiting and to keep an acceptable cost, a direct injection (DI) air-assisted fuel injection system was selected. Since the engine behavior is much more complex compared to a classical 4-stroke engine, some complexity in the engine design needs to be added to allow engine optimization at the different operating conditions. This is the main reason why a VVT system, as well as a flexible fuel injection system were selected. In a second stage, the chosen engine concept is evaluated.
X