Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Elemental Composition Determination and Stoichiometric Air-Fuel Ratios of Gasoline Containing Ethanol

2010-10-25
2010-01-2112
Carbon, hydrogen and oxygen are major elements in modern fuels. Varying combinations of these elements in motor fuel alter the stoichiometric air-fuel ratio (A/F). Stoichiometric A/F ratio is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. With increasing use of ethanol in automotive fuels in recent years, since it can be made from renewable feedstocks, oxygen contents in fuel are increasing. Oxygen contents can be around 1.7 mass % in European E5 gasoline or 3.5 mass % in U.S. E10 gasoline and up to 29 mass % in E85 fuel. The increase in oxygen content of fuel has resulted in changes in other physical and chemical properties due to the differences between ethanol and hydrocarbons refined from fossil oil. A previous paper (SAE 2010-01-1517) discussed the change in energy content of automotive fuel and the estimation of net heating values from common fuel properties.
Technical Paper

Update on Gasoline Fuel Property and Gasoline Additives Impacts on Stochastic Preignition with Review of Global Market Gasoline Quality

2022-08-30
2022-01-1071
Stochastic Preignition (SPI) is an abnormal combustion phenomenon for internal combustion engines (ICE), which has been a significant impact to automotive companies developing high efficiency, turbocharged, direct fuel injection, spark ignited engines. It is becoming clearer what fuel properties are related to the cause of SPI, whether directly with fuel preparation in the cylinder, or mechanisms related to the deposit build-up which contributes to initial and follow-on SPI events. The purpose of this paper is to provide a summary of global market gasoline fuel properties with special attention given to properties and specific compounds from the fuel and fuel additives that can contribute to SPI and the deposit build-up in engines. Based on a review of the global fuel quality, it appears that the fuel quality has not caught up to meet the technology requirements for fuel economy from modern technology engines.
Technical Paper

Review of 2013 U.S. Retail Biodiesel Blends Quality Survey

2014-04-01
2014-01-1379
Biodiesel is a domestic, renewable fuel for diesel engines and is made from agricultural co-products such as soybean oil, rapeseed oil, palm oil and other natural oils. Biodiesel is a cleaner burning fuel that is biodegradable and non-toxic compared to petroleum diesel. Biodiesel has become a major alternative fuel for automotive applications and is critical for lowering US dependence on foreign oil and attain energy security. Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467 specifications. Field warranty and validation tests have shown significant concerns with use of poor quality biodiesel fuels including fuel system deposits, engine oil deterioration, and efficiency loss of the after treatment system. Maintaining good quality of biodiesel is critical for success as a commercial fuel.
Technical Paper

Global Market Gasoline Quality Review: Five Year Trends in Particulate Emission Indices

2021-04-06
2021-01-0623
A gasoline’s chemical composition impacts a vehicle’s sooting tendency and therefore has been the subject of numerous emissions studies. From these studies, several mathematical correlation equations have been developed to predict a gasoline’s sooting tendency in modern spark-ignited internal combustion engine vehicles. This paper reviews the recently developed predictive tool methods and summarizes five years of global market fuel survey data to characterize gasoline sooting tendency trends around the world. Additionally, the paper will evaluate and suggest changes to the predictive methods to improve emissions correlations.
Journal Article

Fuel Octane and Volatility Effects on the Stochastic Pre-Ignition Behavior of a 2.0L Gasoline Turbocharged DI Engine

2014-04-01
2014-01-1226
Classic, hot-spot induced pre-ignition is a phenomenon that has been observed in gasoline spark ignited engines over the past 60-70 years. With the development of turbocharged, direct-injected (DI) gasoline engines, a new pre-ignition phenomenon occurring at low engine speeds and high loads has been encountered. Termed Stochastic Pre-ignition (SPI), it has become a significant issue to address in allowing for the full potential of gasoline turbo DI technology to improve powertrain efficiency. Many researchers are studying all aspects of the causes of Stochastic Pre-ignition, including causes by oil, fuel and engine hardware systems. The focus of this specific research was to study the relationship of fuel octane and volatility to Stochastic Pre-ignition behavior utilizing a GM 2.0L Gasoline Turbocharged DI engine (LHU).
Journal Article

Estimation of Elemental Composition of Diesel Fuel Containing Biodiesel

2013-10-14
2013-01-2600
Carbon, hydrogen and oxygen are major elements in vehicle fuels. Knowledge of fuels elemental composition is helpful in addressing its performance characteristics. Carbon, hydrogen and oxygen composition is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the oxygen content.
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
X