Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Injector Fouling in Direct Injection Spark Ignition Engines - A New Test Procedure for the Evaluation of Gasoline Additives

2017-10-08
2017-01-2294
In order to be ever more fuel efficient the use of Direct Injection (DI) is becoming standard in spark ignition engines. When associated with efficient turbochargers it has generated a significant increase in the overall performance of these engines. These hardware developments lead to increased stresses placed upon the fuel and the fuel injection system: for example injection pressures increased up to 400 bar, increased fuel and nozzle temperatures and contact with the flame in the combustion chamber. DISI injectors are thus subjected to undesirable deposit formation which can have detrimental consequences on engine operation such as reduced power, EOBD (Engine On Board Diagnostics) issues, impaired driveability and increased particulate emissions. In order to evaluate the sensitivity of DI spark ignition engines to fuel-related injector deposit formation, a new engine test procedure has been developed.
Technical Paper

Optimization of Dual Fuel Diesel-Methane Operation on a Production Passenger Car Engine - Thermodynamic Analysis

2013-10-14
2013-01-2505
With the emergence of stringent emissions standards and needs for fuel diversification, many countries are considering a massive use of natural gas for transportation. In this context, dual fuel diesel-CNG combustion is considered as a promising solution for highly efficient internal combustion engines. This concept offers the possibility to combine a diesel pilot injection as a high energy combustion initiation event, with an indirect injection of methane as main energy source. Low CO2 emissions can be reached thanks to the use of a conventional compression ignition engine with high compression ratio, and thanks to methane's high knocking resistance and low carbon content. Another benefit of dual fuel operation with high diesel substitution rates is the drastic reduction of PM emissions since methane is a very stable molecule containing no soot precursor.
X