Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Quantifying Uncertainty in Vehicle Simulation Studies

2012-04-16
2012-01-0506
The design of vehicles, particularly hybrid and other advanced technology vehicles, is typically complex and benefits from systems engineering processes. Vehicle modeling and simulation have become increasingly important system design tools to improve the accuracy, repeatability, and flexibility of the design process. In developing vehicle computational models and simulation, there is an inevitable compromise between the level of detail and the development/computational cost. The tradeoff is specific to the requirements of each vehicle design effort. The assumptions and detail limitations used for vehicle simulations lead to a varying degree of result uncertainty for each design effort. This paper provides a literature review to investigate the state of the art vehicle simulation methods, and quantifies the uncertainty associated with components that are commonly allocated uncertainty.
Technical Paper

Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro

2017-03-28
2017-01-1262
The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
Technical Paper

Objective Comparison of Hybrid Vehicles through Simulation Optimization

2011-04-12
2011-01-0943
Vehicular design, especially for hybrid electric vehicles, is multifaceted and necessarily objective oriented. Whether designing for total cost, performance, societal impact, or any other factor there can be a number of possible solutions but limited optimal solutions. While many efforts to achieve particular vehicle characteristics through systems engineering achieve acceptable designs, they are extremely resource consuming and often restricted to utilization of a handful of available components. Design complexity often exists when designers must choose between different vehicle architectures or powertrain characteristics. Evaluating design options equivalently often entails undergoing multiple design iterations to fully understand the strengths and weaknesses of selected concepts. Through the use of numerical vehicle modeling, simulation, and optimization many theoretical vehicle configurations can be compared quickly and inexpensively.
Technical Paper

Design of a Fuel Cell Plug-in Hybrid Electric Vehicle in a Range Extending Configuration by Colorado State University for the EcoCAR2 Competition

2012-09-10
2012-01-1765
EcoCAR2 is a three year project in which a 2013 Chevrolet Malibu will be redesigned to reduce emissions and be more energy efficient without sacrificing performance, safety, or consumer appeal. The competition includes 15 universities across North America and is headline sponsored by General Motors and the U.S. Department of Energy. Extensive modeling work guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle architecture with a range extending hydrogen fuel cell. The team has followed the EcoCAR2 vehicle design process (VDP) in the development of the powertrain, energy storage, controls, and auxiliary systems. Details on the design process and results for these subsystems and a discussion of the integration challenges are presented.
Technical Paper

Performance Evaluation of an Autonomous Vehicle Using Resilience Engineering

2022-03-29
2022-01-0067
Standard operation of autonomous vehicles on public roads results in significant exposure to high levels of risk. There is a significant need to develop metrics that evaluate safety of an automated system without reliance on the rate of vehicle accidents and fatalities compared to the number of miles driven; a proactive rather than a reactive metric is needed. Resilience engineering is a new paradigm for safety management that focuses on evaluating complex systems and their interaction with the environment. This paper presents the overall methodology of resilience engineering and the resilience assessment grid (RAG) as an evaluation tool to measure autonomous systems' resilience. This assessment tool was used to evaluate the ability to respond to the system. A Pure Pursuit controller was developed and utilized as the path tracking control algorithm, and the Carla simulator was used to implement the algorithm and develop the testing environment for this methodology.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Validation and Analysis of the Fuel Cell Plug-in Hybrid Electric Vehicle Built by Colorado State University for the EcoCAR 2: Plugging into the Future Vehicle Competition

2014-10-13
2014-01-2910
EcoCAR 2 is the premiere North American collegiate automotive competition that challenges 15 North American universities to redesign a 2013 Chevrolet Malibu to decrease the environmental impact of the Malibu while maintaining its performance, safety, and consumer appeal. The EcoCAR 2 project is a three year competition headline sponsored by General Motors and U.S. Department of Energy. In Year 1 of the competition, extensive modeling guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle powertrain architecture with range extending hydrogen fuel cells, to be called the Malibu H2eV. During this year, the CSU VIT followed the EcoCAR 2 Vehicle Design Process (VDP) to develop the H2eV's electric and hydrogen powertrain, energy storage system (ESS), control systems, and auxiliary systems.
Technical Paper

Economic and Efficient Hybrid Vehicle Fuel Economy and Emissions Modeling Using an Artificial Neural Network

2018-04-03
2018-01-0315
High accuracy hybrid vehicle fuel consumption (FC) and emissions models used in practice today are the product of years of research, are physics based, and bear a large computational cost. However, it may be possible to replace these models with a non-physics based, higher accuracy, and computationally efficient versions. In this research, an alternative method is developed by training and testing a time series artificial neural network (ANN) using real world, on-road data for a hydraulic hybrid truck to predict instantaneous FC and emissions. Parameters affecting model fidelity were investigated including the number of neurons in the hidden layer, specific training inputs, dataset length, and hybrid system status. The results show that the ANN model was computationally faster and predicted FC within a mean absolute error of 0-0.1%. For emissions prediction the ANN model had a mean absolute error of 0-3% across CO2, CO, and NOx aggregate predicted concentrations.
X