Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window

2020-04-14
2020-01-0729
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability, and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide low error velocity prediction. We developed an LSTM deep neural network that uses different groups of datasets collected in Fort Collins, Colorado.
Technical Paper

Towards Improving Vehicle Fuel Economy with ADAS

2018-04-03
2018-01-0593
Modern vehicles have incorporated numerous safety-focused Advanced Driver Assistance Systems (ADAS) in the last decade including smart cruise control and object avoidance. In this paper, we aim to go beyond using ADAS for safety and propose to use ADAS technology to enable predictive optimal energy management and improve vehicle fuel economy. We combine ADAS sensor data with a previously developed prediction model, dynamic programming optimal energy management control, and a validated model of a 2010 Toyota Prius to explore fuel economy. First, a unique ADAS detection scope is defined based on optimal vehicle control prediction aspects demonstrated to be relevant from the literature. Next, during real-world city and highway drive cycles in Denver, Colorado, a camera is used to record video footage of the vehicle environment and define ADAS detection ground truth. Then, various ADAS algorithms are combined, modified, and compared to the ground truth results.
Technical Paper

Performance Evaluation of an Autonomous Vehicle Using Resilience Engineering

2022-03-29
2022-01-0067
Standard operation of autonomous vehicles on public roads results in significant exposure to high levels of risk. There is a significant need to develop metrics that evaluate safety of an automated system without reliance on the rate of vehicle accidents and fatalities compared to the number of miles driven; a proactive rather than a reactive metric is needed. Resilience engineering is a new paradigm for safety management that focuses on evaluating complex systems and their interaction with the environment. This paper presents the overall methodology of resilience engineering and the resilience assessment grid (RAG) as an evaluation tool to measure autonomous systems' resilience. This assessment tool was used to evaluate the ability to respond to the system. A Pure Pursuit controller was developed and utilized as the path tracking control algorithm, and the Carla simulator was used to implement the algorithm and develop the testing environment for this methodology.
Technical Paper

Quantifying Repeatability of Real-World On-Road Driving Using Dynamic Time Warping

2022-03-29
2022-01-0269
There are numerous activities in the automotive industry in which a vehicle drives a pre-defined route multiple times such as portable emissions measurement systems testing or real-world electric vehicle range testing. The speed profile is not the same for each drive cycle due to uncontrollable real-world variables such as traffic, stoplights, stalled vehicles, or weather conditions. It can be difficult to compare each run accurately. To this end, this paper presents a method to compare and quantify the repeatability of real-world on-road vehicle driving schedules using dynamic time warping (DTW). DTW is a well-developed computational algorithm which compares two different time-series signals describing the same underlying phenomenon but occurring at different time scales. DTW is applied to real-world, on-road drive cycles, and metrics are developed to quantify similarities between these drive cycles.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Autonomous Eco-Driving Evaluation of an Electric Vehicle on a Chassis Dynamometer

2023-04-11
2023-01-0715
Connected and Automated Vehicles (CAV) provide new prospects for energy-efficient driving due to their improved information accessibility, enhanced processing capacity, and precise control. The idea of the Eco-Driving (ED) control problem is to perform energy-efficient speed planning for a connected and automated vehicle using data obtained from high-resolution maps and Vehicle-to-Everything (V2X) communication. With the recent goal of commercialization of autonomous vehicle technology, more research has been done to the investigation of autonomous eco-driving control. Previous research for autonomous eco-driving control has shown that energy efficiency improvements can be achieved by using optimization techniques. Most of these studies are conducted through simulations, but many more physical vehicle integrated test application studies are needed.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
X