Refine Your Search

Topic

Search Results

Journal Article

Particle Size Distribution Measurements from Early to Late Injection Timing Low Temperature Combustion in a Heavy Duty Diesel Engine

2010-04-12
2010-01-1121
The use of early and late injection diesel Low Temperature Combustion (LTC) strategies in the low to mid load operating range are becoming increasingly popular options for production diesel engines to reduce oxides of nitrogen (NOx) and particulate matter (PM) emissions. Although opacity-based filter smoke number (FSN) PM measurements in these operating conditions have been reduced to near zero for many instruments (which are standard and very useful in most engine combustion research laboratories), significant changes can still be seen in the particle size and number measurements (such as a 2.5 - 4.5 fold variation in total particle number concentration, depending on engine operating condition). The current work presents particle size distribution measurements from early to late injection timing LTC, varying the start of injection (SOI) by three crank angle degrees (CAD) per data point, for two exhaust gas recirculation (EGR) rates, 45% and 50%.
Journal Article

Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine

2015-04-14
2015-01-0830
Partially Premixed Combustion (PPC) of fuels in the gasoline octane range has proven its potential to achieve simultaneous reduction in soot and NOX emissions, combined with high indicated efficiencies; while still retaining proper control over combustion phasing with the injection event, contrary to fully premixed strategies. However, gasoline fuels with high octane number as the commonly available for the public provide a challenge to ensure reliable ignition especially in the low load range, while fuel blends with lower octane numbers present problems for extending the ignition delay in the high load range and avoid the onset of knocking-like combustion. Thus, choosing an appropriate fuel and injection strategy is critical to solve these issues, assuring successful PPC operation in the full engine map.
Journal Article

Impact of Spark Assistance and Multiple Injections on Gasoline PPC Light Load

2014-10-13
2014-01-2669
Along the last years, engine researchers are more and more focusing their efforts on the advanced low temperature combustion (LTC) concepts with the aim of achieving the stringent limits of the current emission legislations. In this regard, several studies based on highly premixed combustion concepts such as HCCI has been confirmed as a promising way to decrease drastically the most relevant CI diesel engine-out emissions, NOx and soot. However, the major HCCI drawbacks are the narrow load range, bounded by either misfiring (low load, low speed) or hardware limitations (higher load, higher speeds) and the combustion control (cycle-to-cylce control and combustion phasing). Although several techniques have been widely investigated in order to overcome these drawbacks, the high chemical reactivity of the diesel fuel remains as the main limitation for the combustion control.
Journal Article

An Investigation of Radiation Heat Transfer in a Light-Duty Diesel Engine

2015-09-06
2015-24-2443
In the last two decades engine research has been mainly focused on reducing pollutant emissions. This fact together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). In this framework, the heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminution. In particular, in modern direct-injection diesel engines, the radiation emission from soot particles can constitute a significant component of the efficiency losses. Thus, the main of objective of the current research was to evaluate the amount of energy lost to soot radiation relative to the input fuel chemical energy during the combustion event under several representative engine loads and speeds. Moreover, the current research characterized the impact of different engine operating conditions on radiation heat transfer.
Journal Article

Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled with Diesel and Gasoline at Different Engine Speeds

2017-09-04
2017-24-0085
This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines the port fuel injection of low-reactive/gasoline-like fuels with direct injection of highly reactive/diesel-like fuels. The particulates size distributions from 5-250 nm were measured using a scanning mobility particle sizer at six engine speeds, from 950 to 2200 rpm, and 25% engine load. The same procedure was followed for conventional diesel combustion. The study was performed in a single-cylinder engine derived from a stock medium-duty multi-cylinder diesel engine of 15.3:1 compression ratio. The combustion strategy proposed during the tests campaign was limited to accomplish both mechanical and emissions constraints. The results confirms that reactivity controlled compression ignition promotes ultra-low levels of nitrogen oxides and smoke emissions in the points tested.
Journal Article

Effect of Intake Oxygen Concentration on Particle Size Distribution Measurements from Diesel Low Temperature Combustion

2011-04-12
2011-01-1355
Concepts of premixed diesel Low Temperature Combustion (LTC) have been shown to be advantageous in greatly reducing engine-out nitrogen oxide (NOx) and particulate matter (PM) emissions, even below the minimum detection limit of standard opacity-based PM mass instruments. Previous research has revealed that significant changes to the PM size and number emissions still occur for changes to the LTC engine operating conditions. This work investigates the influence of reductions in intake oxygen concentration on PM (mass, size, and number), NOx, hydrocarbon (HC), and carbon monoxide (CO) emissions from select LTC engine operating conditions. Exhaust particle size distributions were measured for multiple engine operating conditions of premixed diesel LTC within a range of five intake oxygen concentrations from 9% to 13% (by volume) at three intake pressures from 1.325 to 1.6 bar.
Journal Article

An Investigation on Mixing and Auto-ignition using Diesel and Gasoline in a Direct-Injection Compression-Ignition Engine Operating in PCCI Combustion Conditions

2011-06-09
2011-37-0008
Most of the new Diesel combustion concepts are mainly based on reducing local combustion temperatures and enhancing the fuel/air mixing with the aim of simultaneously reducing soot and NOx emissions. In this framework, Premixed Charge Compression Ignition (PCCI) has revealed as one of the best options to combine both low emissions and good combustion controllability. During last years, PCCI strategy has been widely explored using high EGR levels and different early or late injection timings to extend the ignition delay. Recently, the use of lower cetane fuels is under investigation. Despite the great quantity of research work performed, there are still some aspects related to PCCI combustion that are not completely well known. In this paper an experimental and numerical study is carried out focused on understanding the mixing and auto-ignition processes in PCCI combustion conditions using Diesel and Gasoline fuels.
Technical Paper

Surrogate Fuel Formulation to Improve the Dual-Mode Dual-Fuel Combustion Operation at Different Operating Conditions

2020-09-15
2020-01-2073
Dual-mode dual-fuel combustion is a promising combustion concept to achieve the required emissions and CO2 reductions imposed by the next standards. Nonetheless, the fuel formulation requirements are stricter than for the single-fuel combustion concepts as the combustion concept relies on the reactivity of two different fuels. This work investigates the effect of the low reactivity fuel sensitivity (S=RON-MON) and the octane number at different operating conditions representative of the different combustion regimes found during the dual-mode dual-fuel operation. For this purpose, experimental tests were performed using a PRF 95 with three different sensitivities (S0, S5 and S10) at operating conditions of 25% load/950 rpm, 50%/1800 rpm and 100%/2200 rpm. Moreover, air sweeps varying ±10% around a reference air mass were performed at 25%/1800 rpm and 50%/1800 rpm. Conventional diesel fuel was used as high reactivity fuel in all the cases.
Technical Paper

Optimization Towards Low-temperature Combustion in a HSDI Diesel Engine, Using Consecutive Screenings

2007-04-16
2007-01-0911
This paper describes the optimization process of a small single-cylinder research HSDI diesel engine, starting from a conventional combustion towards split-injection low-temperature combustion. Targets for emissions, fuel consumption and combustion noise are defined with the characteristics of low temperature combustion in mind, in other words, high CO, HC and combustion noise but low soot and NOX. In this investigation the targets are defined for a medium-load working modes of a typical small four-cylinder turbo-charged diesel engine, equipped with a particulate trap and oxidation catalyst. They are introduced into an objective target function which is a guide for the optimization process. The statistical optimization procedure used is the method of consecutive screenings. With this methodology, six factors are optimized: mass distribution of the fuel injection pattern, injection pressure, combustion phasing, EGR rate, boost pressure and dwell time between injection events.
Technical Paper

Advanced Injection Strategies to Attain Partially Premixed Combustion Process in a Heavy Duty Diesel Engine

2008-04-14
2008-01-0642
The scope of present study is the analysis of the potential of the highly premixed combustion concept for pollutant control in a HD Diesel engine. Two different approaches to attain this advanced combustion concept are presented in this paper. A narrow angle nozzle configuration is investigated with two different adapted piston bowl geometries. Parametrical tests were performed in a HD single cylinder engine with the aim of appreciating advantages and limitations of these strategies. In each case, results are compared with equivalent conventional single injection strategy. This analysis is focused on NOx-soot emissions and also on engine performance.
Technical Paper

Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine

2001-03-05
2001-01-0526
The work presented here focuses on the influence of pre- and post-injection on the development of the combustion process and on engine efficiency and pollutant emissions. Tests were performed with a heavy-duty 1.8 litre single-cylinder engine. The study combines performance and emissions measurements together with heat release law analysis. Four representative operating conditions from the European Steady state test Cycle (ESC) have been considered. For each one, the fuel quantity of the pre- and post-injection has been varied between 12 and 20 mg/cc, and the delay of the pre- and post-injection respect to the main injection has been modified too. With a pre-injection strategy it has been possible to reduce the fuel consumption with little soot penalty but causing an increase in NOx levels in most engine modes. The post-injection strategy has been demonstrated to be efficient in soot reduction without NOx emission and fuel consumption penalty.
Technical Paper

Potential of Premixed Combustion With Flash Late Injection On a Heavy-Duty Diesel Engine

2004-06-08
2004-01-1906
Among the various homogeneous combustion concepts, the “late injection strategy” shows potential to put NOx and particulate emissions within the Euro 5 box at low loads. However, the corresponding retarded injection timings lead to increased fuel consumption. This article gives an overview of techniques which improve fuel consumption by enabling the combustion to be phased closer to top dead center. Primarily, injection duration can be shorten using an adapted Common Rail and high flow tips. Secondly, the ignition delay can be increased through lowered compression ratio or retarded inlet valve closing. Lastly, the mixing of air and fuel can be enhanced as a result of additional nozzle tip holes, optimized A/F and swirl level. The end result for this combination of improvements is a defined combustion system that yields the same NOx/BSFC trade-off as conventional combustion at low loads, but with very low soot emissions.
Technical Paper

THREE DIMENSIONAL CALCULATION OF THE FLOW IN A DI DIESEL ENGINE WITH VARIABLE SWIRL INTAKE PORTS

2001-10-01
2001-01-3230
The objective of this paper is to analyse the flow characteristics inside the cylinder of a DI Diesel engine at variable swirl number. Initially, the cylinder head is characterised by means of three-dimensional calculations of the steady flow through the intake ports. These calculations have been made for several positions of the throttles, from wide open, to closed, using the STAR-CD commercial CFD code. They have been validated with steady flow experimental data measured with torque-meter. Next, 3D calculations of the compression stroke are presented and compared with experimental measurements. The initial conditions inside the cylinder in the TDC have been estimated using the head characterisation tests and a zero-dimensional model. The results obtained are in good agreement with the experiments.
Technical Paper

Reduction of Pollutant Emissions in a HD Diesel Engine by Adjustment of Injection Parameters, Boost Pressure and EGR

2003-03-03
2003-01-0343
The purpose of the study reported in this paper was to exploit the possibility of adjusting some injection parameters in a diesel engine fitted with a common-rail injection system with the final goal of reducing pollutant emissions. Starting from the original settings, several injection parameters like nozzle hole diameter, injection pressure and injection duration, were adjusted following three different injection strategies, trying to produce some specific fuel spray patterns (spray penetration and cone angle, air entrainment, etc). Additionally, boost pressure was modified, in order to control spray-air interaction, and EGR was introduced to achieve the required NOx reduction. The adjusted injection setting allowed to generate starting values in pollutants emissions very tolerant to EGR, in such a way that the achieved reduction of NOx was not frustrated by an excessive increase in PM emissions.
Technical Paper

Influence of the Post-Injection Pattern on Performance, Soot and NOx Emissions in a HD Diesel Engine

2002-03-04
2002-01-0502
The main objective of the study described in this paper is to explore the potential of different post-injection patterns, with a plain common rail system, for reduction of soot emissions in HD diesel engines. Test have been carried out in a single-cylinder engine at several critical engine operation points from the European Steady state test Cycle (ESC). At these operation points, EGR was introduced to reduce NOx emissions to a given value, and then different post-injection patterns were produced. A parametric study was performed, considering the time between injections and the post-injected fuel mass as the main variables. In every case the total injected fuel mass was kept constant. Aside from the experimental data obtained in the engine tests, a diagnosis model was applied to calculate heat release laws and other parameters depicting the combustion process.
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

Influence of Direct-Injected Fuel Properties on Performance and Emissions from a Light-Duty Diesel Engine Running Under RCCI Combustion Mode

2018-04-03
2018-01-0250
The dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI) allows an effective control of the combustion process by means of modulating the in-cylinder fuel reactivity depending on the engine operating conditions. This strategy has been found to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with diesel-like or better thermal efficiency in a great part of the engine map. The role of the low reactivity fuel properties and engine settings over RCCI combustion has been widely investigated in literature, concluding that the direct-injected fuel injection timing is a key parameter for controlling the in-cylinder fuel stratification. From this, it can be inferred that the physical and chemical characteristics of the direct-injected fuel should have also an important role on the RCCI combustion process.
Technical Paper

Particle Size and Number Emissions from RCCI with Direct Injections of Two Fuels

2013-04-08
2013-01-1661
Many concepts of premixed diesel combustion at reduced temperatures have been investigated over the last decade as a means to simultaneously decrease engine-out particle and oxide of nitrogen (NO ) emissions. To overcome the trade-off between simultaneously low particle and NO emissions versus high "diesel-like" combustion efficiency, a new dual-fuel technique called Reactivity Controlled Compression Ignition (RCCI) has been researched. In the present study, particle size distributions were measured from RCCI for four gasoline:diesel compositions from 65%:35% to 84%:16%, respectively. Previously, fuel blending (reactivity control) had been carried out by a port fuel injection of the higher volatility fuel and a direct in-cylinder injection of the lower volatility fuel. With a recent mechanical upgrade, it was possible to perform injections of both fuels directly into the combustion chamber.
Technical Paper

An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions

2013-04-08
2013-01-1676
Compared to the gasoline engine, the diesel engine has the advantage of being more efficient and hence achieving a reduction of CO₂ levels. Unfortunately, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are high. To overcome these drawbacks, several new combustion concepts have been developed, including the PCCI (Premixed Charge Compression Ignition) combustion mode. This strategy allows a simultaneous reduction of NOx and soot emissions through the reduction of local combustion temperatures and the enhancement of the fuel/air mixing. In spite of PCCI benefits, the concept is characterized by its high combustion noise levels. Currently, a promising way to improve the PCCI disadvantages is being investigated. It is related with the use of low cetane fuels such as gasoline and diesel-gasoline blends.
Technical Paper

Influence of Boost Pressure and Injection Pressure on Combustion Process and Exhaust Emissions in a HD Diesel Engine

2004-06-08
2004-01-1842
The scope of this study is the analysis of the influence of boost pressure and injection pressure on combustion process and pollutant emissions. The influence of these parameters is investigated for different engine speeds. Fuel mass was kept constant for all the tests in order to avoid its influence on the analysis. A single cylinder research diesel engine, equipped with a common rail injection system capable of operating up to a maximum pressure of 150 MPa was used. Special attention was paid to NOx, smoke (which are the most important pollutants for legislation) and brake specific fuel consumption.
X