Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Development of an Advanced Fuzzy Active Steering Controller and a Novel Method to Tune the Fuzzy Controller

2013-04-08
2013-01-0688
A two-passenger, all-wheel-drive urban electric vehicle (AUTO21EV) with four direct-drive in-wheel motors has been designed and developed at the University of Waterloo. An advanced genetic-fuzzy active steering controller is developed based on this vehicle platform. The rule base of the fuzzy controller is developed from expert knowledge, and a multi-criteria genetic algorithm is used to optimize the parameters of the fuzzy active steering controller. To evaluate the performance of this controller, a computational model of the AUTO21EV is driven through several standard test maneuvers using an advanced path-following driver model. As the final step in the evaluation process, the genetic-fuzzy active steering controller is implemented in a hardware- and operator-in-the-loop driving simulator to confirm its performance and effectiveness.
Journal Article

Integrated Stability Control System for Electric Vehicles with In-wheel Motors using Soft Computing Techniques

2009-04-20
2009-01-0435
An electric vehicle model has been developed with four direct-drive in-wheel motors. A high-level vehicle stability controller is proposed, which uses the principles of fuzzy logic to determine the corrective yaw moment required to minimize the vehicle sideslip and yaw rate errors. A genetic algorithm has been used to optimize the parameters of the fuzzy controller. The performance of the controller is evaluated as the vehicle is driven through a double-lane-change maneuver. Preliminary results indicate that the proposed control system has the ability to improve the performance of the vehicle considerably.
X