Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Fuel Properties on the Combustion and Emission of Direct-Injection Gasoline Engine

2000-03-06
2000-01-0253
Experiments using a single-cylinder direct-injection gasoline engine were conducted to evaluate pure substances and refinery feedstocks in order to clarify the effects of fuel properties on the combustion and emission of the direct-injection gasoline engine. Under the stratified charge combustion conditions, olefins had shorter mass-burning periods with a higher indicated mean effective pressure (IMEP), lower hydrocarbon (HC) emissions and higher NOx emissions than other substances. The boiling point affected the mass-burning periods and the HC emissions of paraffins. Aromatic compounds caused poor combustion and smoke production. Under the homogeneous stoichiometric combustion conditions, the combustion of substances was affected by both their boiling points and their chemical properties. Also, a shorter mass-burning period induced a higher IMEP and a lower coefficient of variance of the IMEP.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
X