Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Effect of Stiffness Coefficients on Output Variables in EDSMAC4 Simulations

2006-04-03
2006-01-1396
Numerous studies have validated EDSMAC4 as an effective method of reconstructing automobile collisions; however, little has been done to investigate the effect of varying stiffness coefficients on the results of accident reconstruction and simulation analyses. When comparing simulations to staged collisions, the stiffness coefficients are frequently well defined; however, this is not always the case in real world accidents. Six vehicle-to-vehicle test impacts were modeled using EDSMAC4. Stiffness coefficients for the vehicles were obtained from test data of exemplar vehicles. After modeling the impacts with the base stiffness level, the stiffness coefficients were modified for both vehicles either plus (+) or minus (−) 25%. The impacts were re-run and the predicted vehicle damage (maximum crush and pattern), impact severity (Delta-V), peak acceleration, impact duration, post impact trajectory, and impact force was compared.
Technical Paper

Evaluation of Human Surrogate Models for Rollover

2005-04-11
2005-01-0941
Anthropomorphic test dummies (ATDs) have been validated for the analysis of various types of automobile collisions through pendulum, impact, and sled testing. However, analysis of the fidelity of ATDs in rollover collisions has focused primarily on the behavior of the ATD head and neck in axial compression. Only limited work has been performed to evaluate the behavior of different surrogate models for the analysis of occupant motion during rollover. Recently, Moffatt et al. examined head excursions for near- and far-side occupants using a laboratory-based rollover fixture, which rotated the vehicle about a fixed, longitudinal axis. The responses of both Hybrid III ATD and human volunteers were measured. These experimental datasets were used in the present study to evaluate MADYMO ATD and human facet computational models of occupant motion during the airborne phase of rollover.
X