Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Technical Paper

Simulation of Dynamic Gas Cavity Effects of a Tire under Operational Conditions

2018-04-03
2018-01-0682
The authors are responsible for the development of a structural 3D shell based bead-to-bead model with sidewalls and belt that separately models all functional layers of a modern tire [4]. In this model, the inflation pressure is modeled as a uniform stress acting normal to the shell’s inner face. The pressure can vary depending on the application: prescribed by the MBS-tool to align to a constant pressure specified for a vehicle or scenario, but it can also be modified dynamically to simulate e.g. a sudden pressure loss in a tire [1]. For many applications, this description of the inflation pressure as a time dependent quantity is sufficient. However, there are applications where it is needed to describe the inflation gas using a dynamic gas equation (Euler or Navier-Stokes). One such example is when the tire model is used in NVH (Noise-Vibration-Harshness) applications where the frequency range extends the 200 Hz range.
Technical Paper

Practical Applications of SEA CAE Analysis in Vehicle Sound Package Development

1999-05-17
1999-01-1702
Vehicle sound package serves two basic functions: general acoustic insulation and local problem treatment. The former is often done at the up-front phase of the vehicle development process, and the latter at the downstream phase when representative prototype hardware becomes available and specific noise problems are identified. This paper examines the goals and key tasks of practical SEA CAE applications in the two phases of the sound package development process. Topics on CAE model requirement, typical analysis applications, and ways to improve the effectiveness of SEA applications to compliment hardware testing are discussed.
Technical Paper

Analysis of Vehicle Pillar Cavity Foam Block Effect on Interior Noise Using SEA

1999-05-17
1999-01-1701
Closed cell foam has been used for filling vehicle pillar cavities at select locations to block road noise transmitted through pillars. In the past, most pillar foam implementations in vehicle programs were driven by subjective improvements in interior sound. In this study road test results are used to correlate a detailed CAE (Computer-Aided Engineering) model based on the statistical energy analysis method. Noise reduction characteristics of pillar with a number of foam block fillings were then studied using the CAE model. The CAE models provided means to model and understand the mechanism of noise energy flow through pillar cavities. A number of insightful conclusions were obtained as result of the study.
X