Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Technical Paper

Computational Investigation of the Effects of Driver and Vehicle Interior Factors on the Risk of Knee-Thigh-Hip Injuries in Frontal Crashes

2010-04-12
2010-01-1023
The effects of seatbelt use, muscle tension, lower-extremity posture, driver fore-aft seat position, seat height, and seat angle on the likelihood of knee, thigh, and hip (KTH) injuries during knee-to-knee-bolster impacts in frontal crashes were studied using a finite element (FE) human model. A midsize male whole-body FE model, with a previously validated knee-impact response, was further validated in this study against whole-body responses from two sets of cadaver sled tests. This human model was integrated with vehicle instrument panel, seat, and restraint-system models. An FMVSS 208 crash pulse of a passenger car was used to evaluate the effects of the aforementioned factors on the risk of KTH injuries. Simulation results indicated that seatbelts significantly reduced peak forces generated at the knee, in the thigh, and at the hip, and thereby reduced the risk of KTH injuries.
Technical Paper

Effects of Crash Pulse, Impact Angle, Occupant Size, Front Seat Location, and Restraint System on Rear Seat Occupant Protection

2015-04-14
2015-01-1453
In this study, two sled series were conducted with a sled buck representing a compact vehicle. The first series of tests focused on the effects of crash pulse, impact angle, occupant size, and front seat location on rear seat occupant restraint with a generic rear-seat belt system without pre-tensioner or load limiter. The second series of tests focused on investigating the benefit of using advanced features for rear-seat occupant restraint in the most severe crash condition in the first sled series. The first series of tests include 16 test conditions with two impact angles (0° and 15°), two sled pulse (soft and severe), and four ATD sizes (HIII 6YO, HIII 5th female, HIII 95th male, and THOR-NT) with two ATDs in each test. The driver seat was located at the mid position, while the front passenger seat was positioned such that a constant distance between the ATD knee and the front seat is achieved.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
X