Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An On-line Technology Information System (OTIS) for Advanced Life Support

2003-07-07
2003-01-2636
An On-line Technology Information System (OTIS) is currently being developed for the Advanced Life Support (ALS) Program. This paper describes the preliminary development of OTIS, which is a system designed to provide centralized collection and organization of technology information. The lack of thorough, reliable and easily understood technology information is a major obstacle in effective assessment of technology development progress, trade studies, metric calculations, and technology selection for integrated testing. OTIS will provide a formalized, well-organized protocol to communicate thorough, accurate, current and relevant technology information between the hands-on technology developer and the ALS Community. The need for this type of information transfer system within the Solid Waste Management (SWM) element was recently identified and addressed.
Technical Paper

Optimization of Feedstock Composition and PreProcessing for Composting in Advanced Life Support Systems

2001-07-09
2001-01-2297
Advanced Life Support (ALS) systems designed for long-duration manned space missions, particularly permanent bases on the Moon or Mars, are likely to employ extensive use of regenerative closed loop systems, including the production of higher plants for food. Such systems will produce substantial amounts of inedible plant material in addition to other standard mission wastes. Composting is one of the several methods currently under investigation for waste processing and resource recovery in ALS systems. While composting is a robust microbiological process that can be utilized to treat a variety of organic materials under a wide range of environmental conditions, both feedstock preparation and process control require optimization. For instance, initial waste feedstock composition, carbon to nitrogen ratio (C:N), particle size, and moisture content are critical factors for ensuring optimal processing conditions and maximal rates of degradation.
X