Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Development of Driving Control System Based on Optimal Distribution for a 6WD/6WS Vehicle

2010-04-12
2010-01-0091
This paper describes a driving controller to improve vehicle lateral stability and maneuverability for a six wheel driving / six wheel steering (6WD/6WS) vehicle. The driving controller consists of upper and lower level controller. The upper level controller based on sliding control theory determines front, middle steering angle, additional net yaw moment and longitudinal net force according to reference velocity and steering of a manual driving, remote control and autonomous controller. The lower level controller takes desired longitudinal net force, yaw moment and tire force information as an input and determines additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and has considered the friction circle related to vertical tire force and friction coefficient acting on the road and tire.
Journal Article

An Investigation into Multi-Core Architectures to Improve a Processing Performance of the Unified Chassis Control Algorithms

2010-04-12
2010-01-0662
This paper describes an investigation into multi-core processing architecture for implementation of a Unified Chassis Control (UCC) algorithm. The multi-core architecture is suggested to reduce the operating load and maximization of the reliability to improve of the UCC system performance. For the purpose of this study, the proposed multi-core architecture supports distributed control with analytical and physical redundancy capabilities. In this paper, the UCC algorithm embedded in electronic control unit (ECU) is comprised of three parts; a supervisor, a main controller, and fault detection/ isolation/ tolerance control (FDI/FTC). An ECU is configured by three processors, and a control area network (CAN) is also implemented for hardware-in-the-loop (HILS) evaluation. Two types of multi-core architectures such as distributed processing, and triple voting are implemented to investigate the performance and reliability.
Journal Article

Design and Evaluation of Emergency Driving Support Using Motor Driven Power Steering and Differential Braking on a Virtual Test Track

2013-04-08
2013-01-0726
This paper presents the design and evaluation of an emergency driving support (EDS) algorithm. The control objective is to assist driver's collision avoidance maneuver to overcome a hazardous situation. To support driver, electrically controllable chassis components such as motor driven power steering (MDPS) and differential braking and surrounding sensor systems such as radar and camera are used. The EDS algorithm is designed for 3 parts: monitoring, decision, and control. The proposed EDS algorithm recognizes a collision danger using minimum lateral acceleration to avoid collision and time-to-collision (TTC) and driver's intention using sensor systems. The control mode is determined using the indices from monitoring process and the collision avoidance trajectory is derived with trapezoidal acceleration profile (TAP).
Journal Article

Skid Steering based Driving Control of a Robotic Vehicle with Six In-Wheel Drives

2010-04-12
2010-01-0087
This paper describes a driving control algorithm based on a skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The RVAS is a kind of unmanned ground vehicle based on a skid steering using independent in-wheel drive at each wheel. The driving control algorithm consists of four parts: a speed controller for following a desired speed, a lateral motion controller that computes a yaw moment input to track a desired yaw rate or a desired trajectory according to the control mode, a longitudinal tire force distribution algorithm that determines an optimal desired longitudinal tire force and a wheel torque controller that determines a wheel torque command at each wheel in order to keep the slip ratio at each wheel below a limit value as well as to track the desired tire force. The longitudinal and vertical tire force estimators are required for the optimal tire force distribution and wheel slip control.
Technical Paper

Development of a Driving Control Algorithm and Performance Verification Using Real-Time Simulator for a 6WD/6WS Vehicle

2011-04-12
2011-01-0262
This paper describes development and performance verification of a driving control algorithm for a 6 wheel driving and 6 wheel steering (6WD/6WS) vehicle using a real-time simulator. This control algorithm is developed to improve vehicle stability and maneuverability under high speed driving conditions. The driving controller consists of stability decision, upper, lower level and wheel slip controller. The stability decision algorithm determines desired longitudinal acceleration and reference yaw rate in order to maintain lateral and roll stability using G-vectoring method. Upper level controller is designed to obtain reference longitudinal net force, yaw moment and front/middle steering angles. The longitudinal net force is calculated to satisfy the reference longitudinal acceleration by the PID control theory. The reference yaw moment is determined to satisfy the reference yaw rate using sliding control theory. Lower level controller determines distributed tractive/braking torques.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Technical Paper

Correlation of Subjective and Objective Measures of On-Center Handling

2014-04-01
2014-01-0128
This paper presents a methodology of correlation between subjective and objective measures of vehicle on-center handling performance. The subjective measure is a professional test driver's rating of vehicle handling, while the objective measure assesses the handling performance via vehicle dynamic responses. Vehicle test data obtained from field testing has been analyzed to investigate links between the objective and subjective measures. Fifty-six physical parameters have been derived from on-centering hysteresis curves. Statistical tools are employed to obtain good correlation between driver rating and physical parameters. Using an interaction formula, a statistical model which relates the driver rating and principal physical parameters has been obtained. The proposed methodology will be used to show the physical parameters influence on subjective assessment and even to predict the subjective assessment of a vehicle handling performance.
X