Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Investigation of the Impact Phenomenon During Minor Collision

2013-04-08
2013-01-1545
ISO 12405-1,2 specifies international testing standards for lithium-ion batteries for vehicles. In the mechanical shock test is used to determine if the battery is damaged due to the shock imposed when the vehicle runs over a curb or similar minor accidents. Therefore, we conducted minor collision tests against a curb using an actual vehicle and compared the test results with the conditions specified in ISO 12405-1,2. The results confirmed that the impulse wave obtained using an actual vehicle within the range of the test in this study differs from the shape of the impulse wave specified in ISO 12405-1,2.
Technical Paper

Investigation of the Allowable Amount of Hydrogen Leakage Upon Collision

2005-04-11
2005-01-1885
To determine the appropriateness of specifying the allowable amount of hydrogen leakage upon collision based on the amount of leakage with generated heat equivalent to that of gasoline vehicles and CNG vehicles, we investigated the safety of each type of fuel when flame ignites. Our results confirm that the flame lengths for hydrogen and methane are almost equal, and there is no remarkable difference between them in terms of the distance for assuring safety. Furthermore, we confirmed that the irradiant heat flux from the mixed burning of hydrogen flame with liquid flammable materials is almost equal to that of the spray flame of gasoline. Thus, no clear difference was found between various types of fuel. Therefore, it is appropriate to specify the allowable amount of hydrogen leakage based on the amount of leakage with generated heat equivalent to that of other types of fuel.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
X