Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study on Burning Velocity of LPG Fuel in a Constant Volume Combustion Chamber and an SI Engine

2010-04-12
2010-01-0614
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO₂ emission. This is because of propane (C₃H₈), n-butane (n-C₄H₁₀) and i-butane (i-C₄H₁₀), which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO₂, in the past several years, LPG vehicles have widely been used as the alternate gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase in LPG vehicles to comprehend combustion characteristics of LPG. In this study, the differences of laminar burning velocity between C₃H₈, n-C4H10, i-C₄H₁₀ and regular gasoline were evaluated experimentally with the use of a constant volume combustion chamber (CVCC).
Technical Paper

Study on Auto-Ignition and Combustion Mechanism of HCCI Engine

2004-09-27
2004-32-0095
In the HCCI (Homogeneous Charge Compression Ignition) engine, a mixture of fuel and air is supplied to the cylinder and auto-ignition occurs resulting from compression. This method can expand the lean flammability limit, realizing smokeless combustion and also having the potential for realizing low NOx and high efficiency. The optimal ignition timing is necessary in order to keep high thermal efficiency. The Ignition in the HCCI engine largely depends on the chemical reaction between the fuel and the oxidizer. Physical methods in conventional engines cannot control it, so a chemical method is demanded. Combustion duration is maintained properly to avoid knocking. In addition, the amount of HC and CO emissions must be reduced. The objective of this study is to clarify the following through calculations with detailed chemical reactions and through experiment with the 2-stroke HCCI engine: the chemical reaction mechanism, and HC and CO emission mechanisms.
Technical Paper

Evaluation of Real- World Emissions from Heavy-Duty Diesel Vehicle Fueled with FAME, HVO and BTL using PEMS

2014-10-13
2014-01-2823
Widespread use of biofuels for automobiles would greatly reduce CO2 emissions and increase resource recycling, contributing to global environmental conservation. In fact, activities for expanding the production and utilization of biofuels are already proceeding throughout the world. For diesel vehicles, generally, fatty acid methyl ester (FAME) made from vegetable oils is used as a biodiesel. In recent years, hydrotreated vegetable oil (HVO) has also become increasingly popular. In addition, biomass to liquid (BTL) fuel, which can be made from any kinds of biomass by gasification and Fischer-Tropsch process, is expected to be commercialized in the future. On the other hand, emission regulations in each country have been tightened year by year. In accordance with this, diesel engines have complied with the regulations with advanced technologies such as common-rail fuel injection system, high pressure turbocharger, EGR and aftertreatment system.
X