Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Investigation of High Frequency AC Power Distribution Benefits for the Automobile Auxiliary Electrical System

2010-04-12
2010-01-1322
This paper aims to indicate the advantages and any drawbacks of high frequency alternating current (HFAC) power for vehicle auxiliary electrical systems. Generally, benefits of HFAC include efficient power distribution and transformation, space and weight saving and load galvanic isolation. In addition, HFAC bus topologies are distributed to the point of use, lending the system to easy fault detection. The paper is structured as follows: first, the main findings of the most relevant automotive HFAC studies are outlined. Next, an HFAC architecture is proposed which is compared to the existing 14V and proposed 42V centralised DC networks in terms of power distribution efficiency and wiring harness weight saving. For this analysis, the case study of a medium-sized passenger vehicle is considered, and a group of intermittent and continuous auxiliary loads with a cumulative power of 2.8kW.
Technical Paper

Defining Performance Metrics for Hybrid Electric Vehicles

2007-04-16
2007-01-0287
The quantitative assessment and comparison of different hybrid vehicle options has traditionally been done on the basis of measuring or estimating the vehicle's fuel economy over predefined drive-cycles. In general, little or no consideration has been given to the more subjective and difficult to quantify vehicle requirements, such as trying to understand which derivative will be the most “fun” vehicle to drive. A lack of understanding in this area of vehicle performance sufficiently early within the development life-cycle so as to be in a position to influence the vehicle design, can lead to a compromised powertrain architecture which will ultimately increase the risk of product failure. The work presented within this paper constitutes part of the overall design activities associated with the LIFECar programme. The aim of the LIFECar consortium is to manufacture a lightweight, fuel cell hybrid electric sports vehicle.
Technical Paper

Object Oriented Plant Models for HEV Controller Development

2009-04-20
2009-01-0148
With the increased interest in hybrid vehicle technology there is a need to investigate vast amounts of different hybrid vehicle topologies. Modelling and simulation plays an important role in this investigation process. In particular, modelling for controller development can quickly lead to model management and maintenance issues due to the variety of models required. The use of object oriented modelling languages can aid in plant model management by providing flexibility to different levels of users as well as reducing the number of separate plant models required for controller development. Two case studies are presented that illustrate some of the benefits gained from the object oriented modelling approach.
Technical Paper

Regenerative Braking Strategies for A Parallel Hybrid Powertrain with Torque Controlled IVT

2005-10-24
2005-01-3826
Hybrid electric vehicles (HEV) are considered as the most cost effective solution, in the short term perspective, for the achievement of improved fuel economy (FE) and reduced emissions. This paper focuses on regenerative braking in a mild hybrid powertrain with infinitely variable transmission (IVT) and specifically on how its control strategy can be formulated and optimized. The study is conducted using a previously validated fully dynamic powertrain model. An initial investigation of the dynamic vehicle behaviour under braking conditions serves as the basis for the development of a control strategy for best braking performance and maximum energy recovery, the implementation of which requires a fully active and integrated brake control system. Limitations and constraints due to driveline configuration and driveability issues are considered and their effect evaluated. Simulation results show that fuel consumption reductions of 12% are achievable along a standard drive cycle.
X