Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine

2016-04-05
2016-01-0646
Regulated emissions and fuel consumption are the main constraints affecting internal combustion engine (ICE) design. Over the years, many techniques have been used with the aim of meeting these limitations. In particular, exhaust gas recirculation (EGR) has proved to be an invaluable solution to reduce NOx emissions in Diesel engines, becoming a widely used technique in production engines. However, its application has a direct effect on fuel consumption due to both the changes in the in-cylinder processes, affecting indicated efficiency, and also on the air management. An analysis, based on the engine Global Energy Balance, is presented to thoroughly assess the behavior of a HSDI Diesel engine under variable EGR conditions at different operating points. The tests have been carried out keeping constant the conditions at the IVC and the combustion centering.
Technical Paper

Development of a Mixing and Combustion Zero-Dimensional Model for Diesel Engines

2006-04-03
2006-01-1382
The aim of this work is to develop a combustion and emissions (NOx and soot) predictive tool that allows rapid parametric explorations of operating conditions and geometric configurations in diesel engines. This paper will present the mixing and combustion models used. All the models are constructed around a spray-mixing model. This mixing model is based on the gaseous steady jets theory. The transient behavior description of the initial and final phases of the injection-combustion process is obtained from CFD studies. The mixing model allows the determination of the instantaneous local conditions of temperature and species mass fraction, used by the ignition, premixed and diffusion combustion models. The ignition and premixed combustion models are based on a simplification and parameterization of a complete n-heptane chemical kinetics description. Some constants of the models are adjusted by a genetic algorithm with experimental information from different engines.
Technical Paper

Analysis of Engine Walls Thermal Insulation: Performance and Emissions

2015-04-14
2015-01-1660
This paper presents an experimental analysis on the effect of thermal insulation of engine internal walls on the performance and emissions of a heavy-duty diesel engine. Some parts of the engine, like pistons, cylinder head and exhaust manifold were thermally insulated from gas contact side in order to reduce heat losses through the walls. Each component has been analyzed, independently, and in combination with others. The results have been compared with that of the original engine configuration. The analysis focuses on NOx and, smoke emissions along with brake specific fuel consumption. In order to take advantage of the engine insulation, an optimization of the air management and injection settings was finally performed, which provided the best combination for each engine configuration.
X