Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A New Global Algebraic Model for NOx Emissions Formation in Post-Flame Gases - Application to Lean Premixed Combustion Systems

2016-04-05
2016-01-0803
A new global NOx emissions formation model, formulated by a single analytically derived algebraic equation, is developed with relevance to post-flame gases. The model originates from subsets of detailed kinetic schemes for thermal and N2O pathway NO formation, needs no calibration and is quick to implement and run. Due to its simplicity, the model can be readily used in both 1D and 3D-CFD simulation codes, as well as for direct post-processing of engine test data. Characteristic timescales that describe the kinetic nature of the involved NO formation routes, when they evolve in the post-flame gases independently the one from another, are introduced incorporating kinetic information from all relevant elementary reactions.
Journal Article

Quasi-Dimensional Multi-Zone Combustion Diagnostic Tool for SI Engines with Novel NOx and CO Emissions Models

2020-04-14
2020-01-0289
In this work a quasi-dimensional multi-zone combustion diagnostic tool for homogeneous charge Spark Ignition (SI) engines is analytically developed for the evaluation of heat release, flame propagation, combustion velocities as well as engine-out NOx and CO emissions, based on in-cylinder pressure data analysis. The tool can be used to assess the effects of fuel, design and operating parameters on the SI engine combustion and NOx and CO emissions formation processes. Certain novel features are included in the presently developed combustion diagnostic tool. Firstly, combustion chambers of any shape and spark plug position can be considered due to an advanced model for the calculation of the geometric interaction between a spherically expanding flame and a general combustion chamber geometry.
X