Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Convective Heat Transfer Optimization of Automotive Brake Discs

2009-04-20
2009-01-0859
Under intensive braking, such as continuous down-hill braking, high temperatures could be generated in automotive brake disks. The heat dissipation and thermal performance of vented brake discs strongly depends on the aerodynamic characteristics of the air flow through the rotor passages and the geometry configurations of brake discs. In this paper, commercial software GAMBIT is used for geometrical modeling and automatic mesh generating for brake rotors. Then, a computational fluid dynamic package, FLUENT, is employed to simulate the turbulent motions of air flow through the vented discs. Through the numerical simulations, the design criteria regarding the heat transfer rate and air flow rate of the discs are predicted. To optimize the 2-D and 3-D geometrical configurations of the brake discs, commercial software iSIGHT is used to integrate the geometrical modeling with GAMBIT and numerical simulations based on CFD software FLUENT.
Technical Paper

Design of an Actively Controlled Aerodynamic Wing to Increase High-Speed Vehicle Safety

2013-04-08
2013-01-0802
This paper presents the design of airfoil and briefly introduces a real physical prototype for an actively controlled wing to improve high speed vehicle safety. Conventionally, active safety systems of road vehicles, including active steering and differential braking, mainly manipulate the tire/road forces to enhance the lateral stability of vehicles. However, this active safety technology is hindered by the saturation of tire/road forces at high lateral accelerations and on icy slippery roads. In contrast, the use of controlled aerodynamic forces has received little attention. In this paper, the actively controlled wing is proposed to manipulate the negative lift force (downforce) to enhance handling capabilities of vehicles at high speeds.
Technical Paper

A Review of Car-Trailer Lateral Stability Control Approaches

2017-03-28
2017-01-1580
Ensuring the lateral stability and handling of a car-and-trailer combination remains one of the challenges in safety system design and development for articulated vehicles. This paper reviews the state-of-the-art approaches for car-trailer lateral stability control. A literature review covering the effects of external factors, such as aerodynamic forces, tire forces, and road & climatic conditions, is presented. To address the effects of these factors, researchers have previously investigated numerous passive and active safety control techniques. This paper intends to identify the inadequacies of the passive safety approaches and analyzes promising active-control schemes, such as active trailer steering control (ATSC), active trailer braking (ATB) and model reference adaptive controller (MRAC). A comparative study of these control strategies in terms of applicability and cost effectiveness is performed.
X