Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

The Effect of Fuel Temperature on the Ethanol Direct Injection Spray Characteristics of a Multi-hole Injector

2014-10-13
2014-01-2734
Ethanol direct injection (EDI) is a new technology to use ethanol fuel more efficiently in spark ignition engines. Fuel temperature is one of the key factors which determine the evaporation process of liquid fuel spray, and consequently influence the combustion and emission generation of the engine. To better understand the mixture formation process of the EDI spray and provide experimental data for engine modelling, experiments were conducted in a constant volume chamber in engine-like conditions. The high speed Shadowgraphy imaging technique was used to capture the ethanol spray behaviours. The experiments covered a wide range of fuel temperature, ranged from 275 K (non-evaporating) to 400 K (flash-boiling). Particularly the transition of the ethanol spray from normal-evaporating to flash-boiling was investigated.
Technical Paper

Effect of Ambient Temperature on Flame Lift-off and Soot Formation of Biodiesel Sprays

2010-04-12
2010-01-0606
Pure diesel and biodiesel were tested inside a constant-volume combustion chamber which simulates the in-cylinder conditions similar to a diesel engine and is more flexible to change the engine operation boundary conditions. The ambient temperature effect on flame lift-off length for both fuels was first investigated with fixed injection pressure, duration, ambient density, and ambient oxygen concentration. This was determined from time-averaged OH chemiluminescence imaging technique. Then, the impacts of the observed lift-off length variations on oxygen ratio upstream of the lift-off location and the soot formation process were also studied. A Forward Illumination Light Extinction (FILE) soot measurement technique was adopted to study the soot formation process. The FILE technique with the capability of two-dimensional time-resolved quantitative soot measurement provides the much-needed information to investigate the soot formation mechanism.
Technical Paper

Prediction Models Developed for Surface Tension of Alcohol + Diesel Blend Fuels

2013-10-14
2013-01-2598
Surface tension is important due to its affect on fuel spray and atomization processes. Fuel drops tend to breakup easier at smaller surface tension, which leads to smaller Sauter Mean Diameter of the spray and enhanced evaporation. Despite its importance, there are few data on the surface tension of alcohol + diesel fuels and even less are available on its temperature and concentration dependence. To overcome this limitation, this work reports experimental surface tensions of ethanol, n-butanol and diesel at different temperatures, and the experimental surface tensions of ethanol/n-butanol + diesel mixtures at 7 mass fractions at different temperatures. The experimental data showed that mixture surface tension decreased linearly as temperature increased and it also decreased monotonically while alcohol mass fraction increased. The results were correlated with concentration and temperature using the least square fitting method.
Technical Paper

Investigation to Charge Cooling Effect of Evaporation of Ethanol Fuel Directly Injected in a Gasoline Port Injection Engine

2013-10-14
2013-01-2610
Ethanol direct injection plus gasoline port injection (EDI+GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. It takes the advantages of ethanol fuel, such as its greater latent heat of vaporization than that of gasoline fuel, to enhance the charge cooling effect and consequently to increase the compression ratio and improve the engine thermal efficiency. Experimental investigation has shown improvement in the performance of a single cylinder spark ignition engine equipped with EDI+GPI. It was inferred that the charge cooling enhanced by EDI played an important role. To investigate it, a CFD model has been developed for the experimentally tested engine. The Eulerian-Lagrangian approach and Discrete Droplet Model were used to model the evolution of the fuel sprays. The model was verified by comparing the numerical and experimental results of cylinder pressure during the intake and compression strokes.
X