Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling Diesel Engine Combustion With Detailed Chemistry Using a Progress Variable Approach

2005-10-24
2005-01-3855
In this work, we present an unsteady flamelet progress variable approach for diesel engine CFD combustion modeling. The progress variable is based on sensible enthalpy integrated over the flamelet and describes the transient flamelet ignition process. By using an unsteady flamelet library for the progress variable, the impact of local effects, for example variations in the turbulence field, effects of wall heat transfer etc. on the autoignition chemistry can be considered on a cell level. The coupling between the unsteady flamelet library and the transport equation for total enthalpy follows the ideas of the representative interactive flamelet approach. Since the progress variable gives a direct description of the state in the flamelet, the method can be compared to having a flamelet in each computational cell in the CFD grid.
Technical Paper

Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock

2004-10-25
2004-01-2999
A stochastic model based on a probability density function (PDF) was developed for the investigation of different conditions that determine knock in spark ignition (SI) engine, with focus on the turbulent mixing. The model used is based on a two-zone approach, where the burned and unburned gases are described as stochastic reactors. By using a stochastic ensemble to represent the PDF of the scalar variables associated with the burned and the unburned gases it is possible to investigate phenomena that are neglected by the regular existing models (as gas non-uniformity, turbulence mixing, or the variable gas-wall interaction). Two mixing models are implemented for describing the turbulent mixing: the deterministic interaction by exchange with the mean (IEM) model and the stochastic coalescence/ dispersal (C/D) model. Also, a stochastic jump process is employed for modeling the irregularities in the heat transfer.
X