Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Friction Compensation Control Method Research of Electric Power Steering System

2016-04-05
2016-01-1545
A new electric power steering system (EPS) dynamic friction model based on normalized Bouc-Wen model is given, as well as its structure form and model features. In addition, experimental method is used to identify corresponding parameters. In order to improve road feel feedback, this paper analyzes the shortcoming of traditional constant friction compensation control method and proposes a variable friction compensation control method which the friction compensation current changes according to the assist characteristic gain. Through simulation and real vehicle test verification, variable friction compensation control method eliminates the effect of basic assist characteristic, and improves the driver’s road feel under high speed.
Technical Paper

04Road Feel Feedback Design for Vehicle Steer-by-Wire via Electric Power Steering

2013-11-27
2013-01-2898
A new road feel feedback control design of steer-by-wire (SBW) is proposed, which is produce the steering feel of conventional vehicle with equipped electronic power steering (EPS) system, due to SBW system removes mechanical linkages between steering system and front wheels. A dynamic model is established to study the road feel generation and deal with the need of computed rack force of steer system. Based on the analysis of the assisting characteristic and the active damping control strategy of the EPS system, an integrated road feel algorithm is proposed. For rack force is difficult to measure, an estimator is presented to estimate rack force by Kalman filter (KF). The hardware-in-the-loop simulation (HILS) test bench results show that the proposed road feel control design make drivers get road feel information and SBW system can improve the vehicle maneuverability and comfortably.
Technical Paper

A Control Algorithm for Electric Power Steering of Tire Blowout Vehicle to Reduce the Impact Torque on Steering Wheel

2013-04-08
2013-01-1239
Impact torque will be generated on the steering wheel when one tire suddenly blows out on high way, which may cause driver's psychological stress and result in driver's certain misoperations on the car. In this paper, the model of tire blowout vehicle was established; the tire blowout was detected based on the change rate of tire pressure, meanwhile, the rack force caused by tire blowout was estimated through a reduce observer; finally the compensation current was figured out to reduce the impact torque on the steering wheel. Results of simulation tests showed that the control strategy proposed in this paper can effectively reduce the impact torque on the steering wheel and reduce the driver's discomfort caused by tire blowout.
Technical Paper

The Design of Electrically Controlled Steering System Hardware-In-the-Loop Test Bench

2014-04-01
2014-01-0243
Nowadays, conventional steering system cannot meet consumers' requirements as their environmental awareness increasing. Electrically controlled steering system can solve this problem well [1] [2]. Electrically controlled steering system has been not only applied widely in automobile steering technique but also becomes an important section of automobile integrated chassis control technology. It is necessary for vehicles to test their every component repeatedly before every component assembled. So a test bench becomes an essential part for vehicle products' design and improvement. The electrically controlled steering system consists of Electric Power Steering system (EPS), Active Front Steering (AFS) and Steer by Wire (SBW). The similarity among them is containing pinion-and-rack mechanical structure, so it is viable to design a test bench suitable for these three systems. This paper takes EPS as a prototype to verify the design's availability.
Technical Paper

The Resistance Loading System of Electronic Control Steering System Performance Test Bench

2014-04-01
2014-01-0230
Nowadays, electric control steering system has been a main tendency. It consists of Electric Power Steering (EPS) system, Steer by Wire (SBW) system and Active Front Steering (AFS) system. EPS is more widely applied and its technology is more developed. By 2010, the cars equipped with EPS have reached almost 30%. This paper describes one integrated test bench which can test and verify electric control steering system. The main target of the paper is to design and set up a resistance loading system for the test bench referred. The paper takes EPS as a prototype to verify the designed resistance loading system. If the resistance loading system provides a precise simulated torque for the bench, the results of tests will be more approximate with vehicle tests and the acquired data will be reliable for electric control steering system's design and improvement. The linear electric cylinder applied in the loading system is used to provide simulated torque for the bench.
Technical Paper

An Over-Temperature Protection Control Strategy for Electric Power Steering Motor

2012-09-24
2012-01-2057
The EPS motor will be over-heated if large current lasts for a long time, which will decline the performance of EPS motor and even lead to irreparable damage. So the over-temperature protection control should be conducted in order to protect the components of EPS system, especially the durability of EPS motor. In this paper, the motor temperature was estimated according to the environmental temperature and the current of motor armature, and then the EPS assist current was limited based on the estimated temperature of motor to ensure that the EPS motor had a good working condition. So the over-temperature protection control for motor can be realized without increasing the EPS system components. Finally the control strategy for over-temperature protection was conducted in a vehicle with EPS system and its performance was verified.
Technical Paper

Assistance Characteristics and Control Strategy of Electro-Hydraulic Power Steering Systems on Commercial Vehicles

2015-09-29
2015-01-2723
Electro-hydraulic power steering system (EHPS) maintains the advantages of Hydraulic power steering system (HPS) and Electric power steering system (EPS).It is even more superior than this two. In the foreseeable future, this system will have a certain development space. Assistant characters analysis was carried out in this paper. Control strategy based on steering states and feedback control strategy were designed too. Besides, aiming at the emergency steering conditions, steering angular velocity additional controlling strategy was brought out. Under emergency steering conditions, steering angular velocity additional controlling strategy will be applied. Additional steering moment will be calculated to ensure the assistant follow steering rapidly.
X