Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Model-Based Control-Oriented Combustion Phasing Feedback for Fast CA50 Estimation

2015-04-14
2015-01-0868
The highly transient operational nature of passenger car engines makes cylinder pressure based feedback control of combustion phasing difficult. The problem is further complicated by cycle-to-cycle combustion variation. A method for fast and accurate differentiation of normal combustion variations and true changes in combustion phasing is addressed in this research. The proposed method combines the results of a feed forward combustion phasing prediction model and “noisy” measurements from cylinder pressure using an iterative estimation technique. A modified version of an Extended Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the stochastic properties of the combustion phasing measurement at the corresponding engine operating condition. Methods to improve steady state CA50 estimation performance and adaptation to errors are further discussed in this research.
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
Journal Article

Virtual Combustion Phasing Target Correction in the Knock Region for Model-Based Control of Multi-Fuel SI Engines

2013-04-08
2013-01-0307
To improve fuel economy and reduce regulated emissions spark-ignition engines are equipped with a large number of control actuators, motivating the use of model-based ignition timing prediction strategies. Model-based ignition timing strategies require a target combustion phasing for proper calibration, generally defined by the crank angle location where fifty percent of the air/fuel mixture is burned (CA50). When fuel type is altered the target CA50 must be updated in the ‘knock region’ to avoid engine damage while maintaining the highest possible efficiency. This process is particularly important when switching between gasoline and E85 because they have vastly different octane ratings. A semi-physical virtual octane sensor, based on an Arrhenius function combined with a quasi-dimensional turbulent flame entrainment combustion model, is described that identifies the size of the knock region for a given fuel.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

In-Cylinder Thermodynamic Analysis for Performance Engine Development

2012-04-16
2012-01-1170
This research describes several data processing and analysis techniques that can be used to quantify indicated torque losses associated with in-cylinder thermodynamic events. The detailed thermodynamic techniques are intended to aid the development of performance engines under high-load conditions. This study investigates potential IMEP gains that could be made to an engine based on evaluating cylinder and manifold pressure data collected during wide-open-throttle operation. Examination of the data can guide engine design changes by exposing inefficiencies that may have otherwise gone unnoticed. Examples of calibration adjustments and physical intake and exhaust manifold design changes are also presented to validate the data analysis techniques presented. The research data sets were recorded using a 5.3L V8 engine in conjunction with a highly-controlled transient dynamometer.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Technical Paper

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies

2019-09-09
2019-24-0027
This paper seeks to identify key input parameters needed to achieve a production-viable control strategy for spark-assisted compression ignition (SACI) engines. SACI is a combustion strategy that uses a spark plug to initiate a deflagration flame that generates sufficient ignition energy to trigger autoignition in the remaining charge. The flame propagation phase limits the rate of cylinder pressure rise, while autoignition rapidly completes combustion. High dilution within the autoignited charge is generally required to maintain reaction rates feasible for production. However, this high dilution may not be reliably ignited by the spark plug. These competing constraints demand novel mixture preparation strategies for SACI to be feasible in production. SACI with charge stratification has demonstrated sufficiently stable flame propagation to reliably trigger autoignition across much of the engine operating map.
X