Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Journal Article

Virtual Combustion Phasing Target Correction in the Knock Region for Model-Based Control of Multi-Fuel SI Engines

2013-04-08
2013-01-0307
To improve fuel economy and reduce regulated emissions spark-ignition engines are equipped with a large number of control actuators, motivating the use of model-based ignition timing prediction strategies. Model-based ignition timing strategies require a target combustion phasing for proper calibration, generally defined by the crank angle location where fifty percent of the air/fuel mixture is burned (CA50). When fuel type is altered the target CA50 must be updated in the ‘knock region’ to avoid engine damage while maintaining the highest possible efficiency. This process is particularly important when switching between gasoline and E85 because they have vastly different octane ratings. A semi-physical virtual octane sensor, based on an Arrhenius function combined with a quasi-dimensional turbulent flame entrainment combustion model, is described that identifies the size of the knock region for a given fuel.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

A Semi-Physical Artificial Neural Network for Feed Forward Ignition Timing Control of Multi-Fuel SI Engines

2013-04-08
2013-01-0324
Map-based ignition timing control and calibration routines become cumbersome when the number of control degrees of freedom increases and/or a wide range of fuels are used, motivating the use of model-based methods. Purely physics based control techniques can decrease calibration burdens, but require high complexity to capture non-linear engine behavior with low computational requirements. Artificial Neural Networks (ANN), on the other hand, have been recognized as a powerful tool for modeling systems which exhibit nonlinear relationships, but they lack physical significance. Combining these two techniques to produce semi-physical artificial neural network models that can provide high accuracy and low computational intensity is the focus of this research. Physical input parameters are selected based on their sensitivity to combustion duration prediction accuracy.
X