Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Laser-Induced Fluorescence Investigation of Nitric Oxide Formation and Hydroxyl Radicals in a Diesel Rapid Compression Machine

2010-05-05
2010-01-1508
The research presented here aims at providing a deeper understanding of the formation of nitric oxide in diesel combustion. To this end, in-cylinder distributions of nitric oxide (NO) were acquired by laser-induced fluorescence (LIF) in a rapid compression machine at conditions representative of a modern diesel passenger vehicle. In particular, the effects of injection and in-cylinder pressure on NO formation were investigated temporally and spatially to offer new insight into the formation of NO. Excitation and collection strategies were notably fine-tuned to avoid the collection of spurious signal due to oxygen (O₂) fluorescence. NO fluorescence was first recorded slightly after the onset of the diffusion flame and until late in the expansion stroke. The early low levels of NO were located on the lean side of the high density of hydroxyl radicals (OH).
Technical Paper

PDA Characterisation of Dense Diesel Sprays Using a Common-Rail Injection System

2003-10-27
2003-01-3085
To meet the future low emission targets for Diesel engines, engineers are optimising both the fuel injection and after treatment systems fitted to Diesel engines. In order to optimise the fuel injection system there is a need to characterize the fuel spray for a given injection nozzle geometry and injection pressure/duration. Modern Diesel common rail systems produce very dense sprays, making in-cylinder investigation particularly difficult. In this study the measurement of droplet sizes and velocities in dense Diesel sprays has been investigated using Phase Doppler Anemometry (PDA). PDA has been proven to be a valuable technique in providing an understanding of the structure and characteristics of liquid sprays in many studies. It is often applied to finely atomised and dispersed particle flows.
Technical Paper

Characterisation of the Soot Formation Processes in a High Pressure Combusting Diesel Fuel Spray

2003-10-27
2003-01-3086
As part of an ongoing investigation, the influence of In Cylinder Pressure (ICP) and fuel injection pressure on the soot formation processes in a diesel fuel spray were studied. The work was performed using a rapid compression machine at ambient conditions representative of a modern High Speed Direct Injection diesel engine, and with fuel injection more representative of full load. Future tests will aim to consider the effects of pilot injections and EGR rates. The qualitative soot concentration was determined using the Laser Induced Incandescence (LII) technique both spatially and temporally at a range of test conditions. Peak soot concentration values were determined, from which a good correlation between soot concentration and injection pressure was observed. The peak soot concentration was found to correlate well with the velocity of the injected fuel jet.
Technical Paper

The Influence of Injector Parameters on the Formation and Break-Up of a Diesel Spray

2001-03-05
2001-01-0529
The influences of injector nozzle geometry, injection pressure and ambient air conditions on a diesel fuel spray were examined using back-lighting techniques. Both stills and high speed imaging techniques were used. Operating conditions representative of a modern turbocharged aftercooled HSDI diesel engine were achieved in an optical rapid compression machine fitted with a common rail fuel injector. Qualitative differences in spray structure were observed between tests performed with short and long injection periods. Changes in the flow structure within the nozzle could be the source of this effect. The temporal liquid penetration lengths were derived from the high-speed images. Comparisons were made between different nozzle geometries and different injection pressures. Differences were observed between VCO (Valve Covers Orifice) and mini-sac nozzles, with the mini-sac nozzles showing a higher rate of penetration under the same conditions.
Journal Article

Simulation and Measurement of Transient Fluid Phenomena within Diesel Injection

2019-01-15
2019-01-0066
Rail pressures of modern diesel fuel injection systems have increased significantly over recent years, greatly improving atomisation of the main fuel injection event and air utilisation of the combustion process. Continued improvement in controlling the process of introducing fuel into the cylinder has led to focussing on fluid phenomena related to transient response. High-speed microscopy has been employed to visualise the detailed fluid dynamics around the near nozzle region of an automotive diesel fuel injector, during the opening, closing and post injection events. Complementary computational fluid dynamic (CFD) simulations have been undertaken to elucidate the interaction of the liquid and gas phases during these highly transient events, including an assessment of close-coupled injections.
X