Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Technical Paper

Developing a Sled Test from Crash Test Data

2007-04-16
2007-01-0711
Full-scale vehicle crash testing is often used as an engineering tool to reproduce the dynamic conditions of real-world accidents. The complex and destructive nature of conducting these crash tests makes them very expensive. Often times engineering analysis requires multiple tests wherein occupant motion or vehicle component performance comparisons are made when subject to specific dynamic conditions. For these situations, sled testing becomes the preferred evaluation method. Sled testing allows engineers to reproduce the dynamic conditions of a full-scale crash test in a controlled environment at a fraction of the cost. A particular advantage of sled testing is that only a single vehicle is consumed. Typically the occupant compartment of the vehicle, referred to as a vehicle buck, is mounted to the test sled. The sled and buck can then be subjected to accelerations representative of a particular crash environment.
Technical Paper

Restraint Load Marks in Sled Testing Conducted with the Hybrid III 3-Year-Old and 6-Year-Old Anthropomorphic Test Devices

2008-04-14
2008-01-1239
Properly restraining a child in an automotive seat may require the use of a weight- and size-appropriate Child Restraint System (CRS). Proper installation of the CRS is a critical part of protecting a child during a motor vehicle collision. During a collision, child occupants sometimes exert enough force on the restraint system to generate load marks on the CRS and the vehicle restraint system. These marks are often relied upon by investigators to determine if the child occupant was properly restrained at the time of the collision. This paper is an observational study of the load marks generated from sled testing that was conducted using Hybrid III 3-year-old and 6-year-old Anthropomorphic Test Devices (ATDs). Tests were conducted with various child restraint systems that were installed in accordance with the manufacturer's recommendations as well as installed improperly. Additional tests were conducted with the ATDs without the use of a CRS.
Technical Paper

Inertial Neck Injuries in Children Involved in Frontal Collisions

2007-04-16
2007-01-1170
There is a paucity of data regarding the potential for pediatric cervical spine injury as a result of acceleration of the head with no direct impact during automotive crashes. Sled tests were conducted using a 3-year-old anthropomorphic test device (ATD) to investigate the effect of restraint type and crash severity on the risk of pediatric inertial neck injury. At higher crash severities, the ATD restrained by only the vehicle three-point restraints sustained higher peak neck tension, peak neck extension and flexion moments, neck injury criterion (Nij) values, peak head accelerations, and HIC values compared to using a forward-facing child restraint system (CRS). The injury assessment reference values (IARVs) for peak tension and Nij were exceeded in all 48 and 64 kph delta-V tests using any restraint type.
X