Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Technical Paper

An Efficient Machine Learning Algorithm for Valve Fault Detection

2022-03-29
2022-01-0163
Multi-level Miller-cycle Dynamic Skip Fire (mDSF) is a combustion engine technology that improves fuel efficiency by deciding on each cylinder-event whether to skip (deactivate) the cylinder, fire with low (Miller) charge, or fire with a high (Power) charge. In an engine with two intake and two exhaust valves per cylinder, skipping can be accomplished by deactivating all valves, while firing with a reduced charge is accomplished by deactivating one of the intake valves. This new ability to modulate the charge level introduces new failure modes. The first is a failure to reactivate the single, high-charge intake valve, which results in a desired High Fire having the air intake of a Low Fire. The second is a failure to deactivate the single intake valve, which results in a Low Fire having the air intake of a High Fire.
X