Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Shock Wave Impact Simulations Using Fluid/Structure/Dynamics Interactions

2011-04-12
2011-01-0258
Ground vehicle subjecting to a blast can sustain vehicle damages and occupant injuries. Direct blast thermal and force loadings compromise vehicle structural integrity and cause damages. Computer simulations of vehicle blast wave damages can be obtained by solving the gas dynamics of the blast wave and the structural dynamics of the vehicle, through a projection of the wave's impact on the vehicle structure. There are various possible ways that the blast can cause injuries to the vehicle occupants, such as direct collision with objects instantly accelerated by the blast pressure and impact by the secondary shock waves transmitted through the platform structure. This paper describes a parallel computer simulation methodology that can potentially be applied to predict the structure damage and the associated occupant kinematics during a blast event by solving the multi-physics problem of fluid dynamics, solid dynamics, and multi-body dynamics.
Technical Paper

Comparison of Computational and Experimental Aerodynamics Results for a WMU Solar Car Model

2005-04-11
2005-01-1910
Three-dimensional numerical simulations using FLUENT [1] were performed to model the airflow over the Sunseeker, an award-winning solar car that was designed and built at Western Michigan University. Converged numerical solutions on three different grids are reported and compared with the available experimental data, which include the lift and the drag coefficients. Also reported are the results obtained by using the second-order upwinding discretization on one of the grids. The comparison shows that the computed lift coefficients agree well with the experimental data for all the three grids and the different orders of numerical methods, indicating that the pressure field is well captured. The agreement with the data for drag coefficient varies, which appears to suggest a higher degree of dependency on the grid distributions than that for the lift coefficient. These results are discussed in terms of their implications for the simulations of similar low-drag vehicles.
X