Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Materials Stack-ups on Fatigue Performance of DP780 and Aluminized Coated Boron Steel GMAW Lap Joint

2007-04-16
2007-01-0634
In this study, fatigue performance of Gas Metal Arc Welded (GMAW) joint for 1.5 mm uncoated DP780 and 1.0 mm and aluminized coated boron (or USIBOR) steel was investigated. Metallurgical properties of DP780 to coated boron steel dissimilar steel lap joints were evaluated using optical microscopy. Microhardness traverse, static and fatigue tests were conducted on these joints. Finite element analysis (FEA) was used to identify the stress distribution of the weld joints with different stack-ups and at same loading conditions. It was found that position of the material (top or bottom in lap joint configuration) had a significant impact on fatigue performance of the dissimilar joint. The amount of heat introduced by welding to coated boron steel is also believed to be important to the fatigue performance of the dissimilar joints. The findings in this study can be used when aluminized boron steel is involved in dissimilar steel and dissimilar thickness GMAW lap joint design.
Technical Paper

Gas Metal Arc Welding (GMAW) Process Optimization of 1.0 mm Usibor® 1500 P Steel to 1.5 mm Uncoated Dual Phase 780 (DP780) Steel Joint for Automotive Body Structural Applications

2010-04-12
2010-01-0446
With the increasing demand for safety, energy saving and emission reduction, Advanced High Strength Steels (AHSS) have become very attractive steels for automobile makers. The usage of AHSS steels is projected to grow significantly in the next 5-10 years with new safety and fuel economy regulations. These new steels have significant manufacturing challenges, particularly for welding and stamping. Welding of AHSS remains one of the technical challenges in the successful application of AHSS in automobile structures due to heat-affected zones (HAZ) at the weld joint. In this study Gas Metal Arc Welding (GMAW) of a lap joint configuration consisting of 1.0 mm Usibor® 1500 steel to uncoated Dual Phase 780 (DP780) steel was investigated. The objective of the study was to understand the wire feed rate (WFR) and torch (or robot) travel speed (TTS) influence on lap joint tensile strength.
X