Refine Your Search

Search Results

Technical Paper

Dynamic Performance of Suspension Seats Under Vehicular Vibration and Shock Excitations

1999-03-01
1999-01-1304
A coupled human-seat-suspension model is developed upon integrating asymmetric and nonlinear models of the cushion, suspension and elastic end-stops with a three degrees-of-freedom biodynamic model of the occupant. The validity of the model is examined under harmonic and stochastic vibration excitations of different classes of vehicles, using the laboratory measured data. The suspension performance under continuous and shock excitations, assessed in terms of Seat Effective Amplitude Transmissibility (SEAT) and Vibration Dose Value (VDV) ratio, revealed that attenuation of continuous and shock-type excitations pose conflicting design requirements. It is thus proposed to develop suspension design for optimal attenuation of continuous vibration, while the severity of end-stop impacts caused by shock-type excitations be minimized through design of optimal buffers. Two different optimization problems are formulated to minimize the SEAT and VDV ratios.
X