Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of Diesel-Ethanol Engine for HCV

2019-01-09
2019-26-0089
Diesel engines dominate in Heavy-Duty applications due to its better fuel economy, higher durability and larger reliability. Fuels derived from petroleum resources are depleting daily and it’s become a scarce resource for future generation to come. With growing environmental consciousness of the adverse implications brought by excessive usage of fossil fuels, the battle for finding alternative fuels as their substitution is getting heated up. At present, renewable energy from bio-fuels has been peddled as one of the most promising substitution for petroleum derived diesel. Using bio-ethanol blended diesel fuel for automobile can significantly reduce diesel usage and exhaust greenhouse gases. Bio-ethanol can be produced by alcoholic fermentation of sucrose or simple sugars. The main drawback is that ethanol is immiscible with diesel fuel over a wide range of temperatures, and the hygroscopic nature of ethanol leading to phase separation in blend.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
X