Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst in Lean Gasoline Engine Exhaust

2015-04-14
2015-01-1008
Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
Journal Article

Performance Comparison of LPG and Gasoline in an Engine Configured for EGR-Loop Catalytic Reforming

2021-09-21
2021-01-1158
In prior work, the EGR loop catalytic reforming strategy developed by ORNL has been shown to provide a relative brake engine efficiency increase of more than 6% by minimizing the thermodynamic expense of the reforming processes, and in some cases achieving thermochemical recuperation (TCR), a form of waste heat recovery where waste heat is converted to usable chemical energy. In doing so, the EGR dilution limit was extended beyond 35% under stoichiometric conditions. In this investigation, a Microlith®-based metal-supported reforming catalyst (developed by Precision Combustion, Inc. (PCI)) was used to reform the parent fuel in a thermodynamically efficient manner into products rich in H2 and CO. We were able to expand the speed and load ranges relative to previous investigations: from 1,500 to 2,500 rpm, and from 2 to 14 bar break mean effective pressure (BMEP).
X