Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Gasoline Combustion Reaction Model

2013-04-08
2013-01-0887
Gasoline includes various kinds of chemical species. Thus, the reaction model of gasoline components that includes the low-temperature oxidation and ignition reaction is necessary to investigate the method to control the combustion process of the gasoline engine. In this study, a gasoline combustion reaction model including n-paraffin, iso-paraffin, olefin, naphthene, alcohol, ether, and aromatic compound was developed. KUCRS (Knowledge-basing Utilities for Complex Reaction Systems) [1] was modified to produce paraffin, olefin, naphthene, alcohol automatically. Also, the toluene reactions of gasoline surrogate model developed by Sakai et al. [2] including toluene, PRF (Primary Reference Fuel), ethanol, and ETBE (Ethyl-tert-butyl-ether) were modified. The universal rule of the reaction mechanisms and rate constants were clarified by using quantum chemical calculation.
Technical Paper

Factors Determining the Octane Number of Alkanes

2014-04-01
2014-01-1227
The relationships between the octane number and the carbon atom number and the molecular structure of alkanes were comprehensively analyzed by using the detailed kinetic model generated by there automatic reaction scheme generation tool, KUCRS [1, 2]. The octane number is an index showing the ignition delay in the engine temperature regime, that is, the engine ignition temperature range. The high octane number is observed in the following two cases; 1 The ignition delay of the low temperature region is large. 2 The ignition delay of the low temperature region is the same, but the transition temperature for NTC (Negative Temperature Coefficient) region is low.
X