Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

2014-10-13
2014-01-2598
Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Journal Article

LP EGR and IGR Compromise on a GDI Engine at Middle Load

2013-04-08
2013-01-0256
Burned gas recirculation is emerging as a promising technology to reduce fuel consumption without compromising performance in turbocharged spark ignited engines. This recirculation can be done internally through Internal Gas Residual (IGR) using Variable Valve Timing (VVT) or externally through classical Exhaust Gas Recirculation circuit (EGR). Both have a large impact on combustion. The purpose of the paper is to give clues to get the best compromise at moderate load between these two technologies in terms of fuel consumption. This experimental work was performed on a Gasoline Direct Injection (GDI) engine, 2.0L displacement, dual independent VVT, equipped with a Low Pressure, cooled and catalyzed EGR loop (LP EGR). The load region covers 6 to 10 bar Indicated Mean Effective Pressure (IMEP). EGR rates obtained vary between 0 and 15%. IGR variation is obtained by using the VVT in order to vary the valve overlap. IGR rates vary from 4 to 8%.
Technical Paper

Increasing Modern Spark Ignition Engine Efficiency: A Comprehension Study of High CR and Atkinson Cycle

2016-10-17
2016-01-2172
Increasing global efficiency of direct injection spark ignition (DISI) engine is nowadays one of the main concerns in automotive research. A conventional way to reduce DISI engine fuel consumption is through downsizing. This approach is well suited to the current homologation cycle as NEDC, but has the drawback to induce over-consumptions in customer real driving usage. Moreover, the driving cycles dedicated to EURO 6d and future regulations will evolve towards higher load operating conditions with higher particulate emissions. Therefore, efficiency of current DISI has to be strongly increased, for homologation cycle and real driving conditions. This implies to deeply understand and improve injection, mixing and flame propagation processes.
X