Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Ignition Control on Combustion Process Non-Repeatability in an Aircraft Radial Piston Engine

2020-09-15
2020-01-2044
The ignition method significantly affects the combustion process in piston aircraft engines. This paper presents the results of bench tests of two variants of the radial piston aircraft engine: equipped with a standard magneto system and an electronic dual ignition system. The engine was tested in steady states for operating points defined by rotational speed and load. Their values corresponded to a load ranging from 50% of nominal power to take-off power. The ignition advance angle was constant for the engine equipped with ignition magnetos, while for the second engine variant it was determined by the developed algorithm introduced to the electronic ignition system control unit. The analysis of the combustion process was based on pressure measurements in one cylinder.
Technical Paper

Hybrid Air/Fuel Ratio Control Using the Adaptive Estimation and Neural Network

2000-03-06
2000-01-1248
The paper describes a hybrid air-fuel mixture control system that uses neural network and the direct adaptive algorithm. The A/F ratio stabilization to the stoichiometric value is required to obtain maximum efficiency of the three-way catalytic converter operation. The issues of the algorithm synthesis of the adaptive control of the fuel injection have been formulated. This was supplemented by the presentation of the state-of-the-art in the adaptive control theory as applied to non-stationary random object identification. The control algorithms of the fuel injection have been reviewed and classified. The fuel injection algorithms in the SI engine have been described and differentiated in terms of the used engine model and regulator structure. The algorithms comprise elements of the object modeling as well as adaptive coefficients for the control quality of the air-fuel ratio in the steady and non-steady conditions.
X