Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Quasi-Dimensional K-k Turbulence Model for Direct Injection Spark Ignition (DISI) Engines Based on the Formal Reduction of a 3D CFD Approach

2016-10-17
2016-01-2229
Combustion in SI engines strongly depends on in-cylinder turbulence characteristics. Turbulence by definition presents three-dimensional (3D) features; accordingly, 3D approaches are mainly used to investigate the in-cylinder flow and assist the engine design. However, SI engine architectures are becoming more and more complex and the generalization of technologies such as Variable Valve Timing (VVT) and Direct Injection (DI) considerably increases the number of degrees of freedom to deal with. In this context, the computing resources demanded by 3D CFD codes hugely increase and car manufacturers privilege system simulation approaches in the first phases of the design process. Accordingly, it is essential that the employed 0D/1D models well capture the main physics of the system and reproduce the impact that engine control parameters have on it.
Technical Paper

Development of a Spray-Based Phenomenological Soot Model for Diesel Engine Applications

2017-09-04
2017-24-0022
Diesel engine pollutant emissions legislation is becoming more and more stringent. New driving cycles, including increasingly severe transient engine operating conditions and low ambient-temperature conditions, extend considerably the engine operating domain to be optimized to attain the expected engine performance. Technological innovations, such as high pressure injection systems, Exhaust Gas Recirculation (EGR) loops and intake pressure boosting systems allow significant improvement of engine performance. Nevertheless, because of the high number of calibration parameters, combustion optimization becomes expensive in terms of resources. System simulation is a promising tool to perform virtual experiments and consequently to reduce costs, however models must account for relevant in-cylinder physics to be sensitive to the impact of technology on combustion and pollutant formation.
Journal Article

Experimental Investigation and Modeling of Early Flame Propagation Stages in Operating Conditions Representative of Modern High Efficiency Spark Ignition Engines

2019-09-09
2019-24-0073
The present social context imposes effective reductions of transport greenhouse gases and pollutant emissions. To answer to this demand, car manufacturers adopted technologies such as downsizing, turbocharging, intense in-cylinder aerodynamics and diluted combustion process. In this context, to master mixture ignition is crucial to ensure an efficient heat release. To get to a clearer knowledge about the physics holding early stages of premixed mixture combustion, the PRISME institute in the framework of the French government research project ANR MACDOC generated a consistent experimental database to study ignition and spherical flame propagation processes in a constant volume vessel in laminar and turbulent environment.
X