Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Impact of Energy Management on the NPV Gasoline Savings of PHEVs

2010-04-12
2010-01-1236
This paper evaluates the impact of energy management strategy on the cost benefits of a plug-in hybrid electric vehicle (PHEV) by taking into account the impact of PHEV energy management on battery life and petroleum displacement over the life of the vehicle. Using Battery in the Loop (BIL), a real battery is subjected to transient power demands by a virtual vehicle. The vehicle energy management strategy is varied, resulting in different battery utilization scenarios. Battery life, which varies with battery utilization, is estimated for the different energy management scenarios. The same representative drive cycle is used over the different energy management strategies to isolate the impact of energy management on battery utilization. PHEV gasoline savings, in comparison to a charge sustaining hybrid, are calculated for each of the energy management strategies, for a fixed distance of 40 miles.
Technical Paper

Analyzing the Uncertainty in the Fuel Economy Prediction for the EPA MOVES Binning Methodology

2007-04-16
2007-01-0280
Developed by the U.S. Environmental Protection Agency (EPA), the Multi-scale mOtor Vehicle Emission Simulator (MOVES) is used to estimate inventories and projections through 2050 at the county or national level for energy consumption, nitrous oxide (N2O), and methane (CH4) from highway vehicles. To simulate a large number of vehicles and fleets on numerous driving cycles, EPA developed a binning technique characterizing the energy rate for varying Vehicle Specific Power (VSP) under predefined vehicle speed ranges. The methodology is based upon the assumption that the vehicle behaves the same way for a predefined vehicle speed and power demand. While this has been validated for conventional vehicles, it has not been for advanced vehicle powertrains, including hybrid electric vehicles (HEVs) where the engine can be ON or OFF depending upon the battery State-of-Charge (SOC).
Technical Paper

Integrating Data, Performing Quality Assurance, and Validating the Vehicle Model for the 2004 Prius Using PSAT

2006-04-03
2006-01-0667
Argonne National Laboratory (ANL), working with the FreedomCAR Partnership, maintains the hybrid vehicle simulation software, Powertrain System Analysis Toolkit (PSAT). The importance of component models and the complexity involved in setting up optimized control laws require validation of the models and control strategies. Using its Advanced Powertrain Research Facilities (APRF), ANL thoroughly tested the 2004 Toyota Prius to validate the PSAT drivetrain. In this paper, we will first describe the methodology used to quality check test data. Then, we will explain the validation process leading to the simulated vehicle control strategy tuning, which is based on the analysis of the differences between test and simulation. Finally, we will demonstrate the validation of PSAT Prius component models and control strategy, using APRF vehicle test data.
X