Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design Strategies for Meeting ECE R14 Safety Test for Light Commercial Vehicle

2010-10-05
2010-01-2017
The ECE R-14, AIS015 safety standard specifies the requirements of the safety belt anchorages namely, minimum numbers, their locations, static strength to reduce the possibility of their failure during accidental crashes for effective occupant restraint and the test procedures. This standard applies to the anchorages of safety belts for adult occupants of forward facing or rearward facing seats in vehicles of categories M and N. ECE R14 ensures the passenger safety during sudden acceleration/retardation and accidents. Early simulations revealed some structural short falls that demanded cabin improvements in order to fulfill regulation requirements for the seal belt anchorage test. This paper describes the innovative design modifications done to meet the seat belt anchorage test. Good correlation with the test is achieved in terms of deformations. These simulation methods helped in reducing the number of intermediate physical tests during the design process.
Technical Paper

Development and Deployment of Bolted Joint Integrity Evaluation for Automotive Suspension Joints

2022-03-29
2022-01-0761
Bolted joints are the most used joints in automotive suspension assemblies. They are expected to retain the strength over the course of useful life of the vehicle and contribute to durability in a big way through reduction of stress amplitudes. Any sort of loosening or slip or breakage in these joints can lead to noise or catastrophic failures. In the past, such issues were addressed through thumb rules and design guidelines. However, with the focus on first-time right tests with reduced validation time it has become important to upfront predict the suspension joint integrity through simulation. Toward this objective, a novel approach was developed to simulate the suspension joint integrity for bolted joints. This approach considers various parameters like bolt preload, tolerance stackup of the parts in the joint, coefficients of friction of various interfaces, quality of contact and effect of deformation at the thread interface on joint integrity.
Technical Paper

Study on Impact of SUV Chassis Stiffness on Vehicle Dynamics through CAE

2020-04-14
2020-01-1004
Today’s automotive industry is a highly competitive market where continuous innovation in design and production of vehicles is required to gain market share and survive in the market. This led to reduction in the life cycle of the design process and design tools. Identifying, understanding and refining these details is significant to develop sustainable cars. Body and chassis stiffness are important specifications of a passenger car which affects handling, steering and ride characteristics of the vehicle. It has been proved that torsional, lateral and local chassis stiffness can play a role in giving the customer a premium feeling by affecting key metrics in the vehicle dynamics behaviour of a passenger car. In this paper, the effect of chassis stiffness on vehicle dynamics performance is studied using computer aided engineering (CAE). Different attributes of vehicle dynamics like vehicle handling, On-Center feel and vehicle ride are considered as performance characteristics.
X