Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Study on the Effects of Biodiesel Fuel on Combustion and Emission Characteristics in a Direct Injection Diesel Engine

2010-04-12
2010-01-1259
The effects of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional CFD models. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NO emissions formation.
Technical Paper

Numerical Modeling of the Impingement Process of Urea-Water Solution Spray on the Heated Walls of SCR Systems

2012-04-16
2012-01-1301
Improving the NOx removal efficiency of an automotive urea-based SCR system requires optimized injection system to minimize wall deposition while providing uniform distribution of exhaust gases and reductant mixture at the entrance of the catalyst. The focus of the current study is to develop and validate a three-dimensional computational model capable of simulating the urea-water-solution (UWS) spray/wall interaction. The interaction between the injected UWS spray droplets and the surrounding gas is modeled using the Eulerian-Lagrangian approach,. A specially developed multicomponent vaporization model is implemented to simulate the depletion mechanism of individual UWS droplets. The spray/wall interaction mechanism involves spray/wall impingement and wall film formation. While the spray/wall impingement mechanism is modeled using a standard criteria, the O'Rourke and Amsden model for wall film formation is modified to account for the multicomponent nature of the UWS spray.
X