Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Urea-SCR Catalysts with Improved Low Temperature Activity

2011-04-12
2011-01-1315
Urea-SCR systems have become one effective method for meeting the ever tightening NOx emission control regulations for diesel engines. Higher activity of SCR catalysts in the low temperature region is crucial for meeting emission regulations and improving fuel economy. Some of the new catalytic components in the literature have shown good low temperature SCR activity, but they have not been fully confirmed to be durable enough for mobile applications. Fe-zeolite has been widely used in mobile applications due to its wide operating temperature window, but after exposure to large amounts of HCs at low temperatures, it is easily deactivated. We developed new SCR catalysts with improved low temperature activity and improved durability against HC fouling and thermal sintering by combining OSC (oxygen storage component) with Fe-zeolite.
Technical Paper

Development of Multi-Functioning Lean NOx Trap Catalysts for the On-board NH3 Generation

2018-04-03
2018-01-1430
Improved Lean NOx Trap (LNT) catalysts with enhanced NH3 generation feature were developed for the small diesel engine. The next generation LNT system needs to perform good NOx conversions over the wide temperature range including below 200°C for urban driving and above 400°C for motorway of real road driving. However, the extended use of BaO, a component of LNT known to be very effective for high temperature NOx storage, results in the decrease of low temperature NOx conversion due to the degradation of NO oxidation associating with sulfur over time. The improvement of the low-temperature LNT performance is a key requirement for the real driving emission control as the best operation temperature for urea-SCR is above ~250°C. In this study, our next generation LNT with new washcoat architecture has demonstrated improved NOx removal efficiencies under the wider operation temperature window than the current production technology.
X