Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Hybrid-Electric Vehicle Controller Development - Levels of Simulation and Verification

2007-04-16
2007-01-1067
Rose-Hulman Institute of Technology is designing a power-split hybrid-electric vehicle that uses three power sources: a 70 kW Diesel engine that uses B-20 Diesel fuel and two 60 kW induction electric machines. All three power sources are connected through a planetary gear set (PGS). The electric machines move the vehicle in forward or reverse, act as motors or generators, and one of the motors is required to control the speed of the engine. When the three power sources are combined with a battery that must be maintained within specific operating limits, the system becomes a challenging control problem. This paper discusses the simulation methods used to design and verify the operation of the supervisory controller that controls all aspects of vehicle operation.
Technical Paper

Combining Passion with Fundamentals - Applying Model-Based Design to Education

2008-04-14
2008-01-1292
Model-Based Design is increasingly prevalent in industrial sectors including aerospace and automotive, but lacking from college and university curricula. The need for students to be adept at the modeling of systems, their associated subsystems, and overall system controller as per the standard industry practice is the impetus for The MathWorks, Freescale, and MotoTron to partner with Rose-Hulman Institute of Technology to address the lack of students familiar with this industry standard practice. Rose-Hulman Institute of Technology has created the Model-Based-System Design Center with the express purpose of introducing the philosophy of Model-Based Design to the educational community. This paper describes the function of the Center and the teaching materials currently being generated.
Technical Paper

Design of a High Voltage Lithium Ion Energy Storage System

2013-04-08
2013-01-0564
One of the deliverables for the GM/DOE sponsored EcoCAR2 competition involved the design and validation of an energy storage system (ESS) that could withstand 20g of acceleration in the longitudinal direction, 20g of acceleration in the lateral direction, and 8g of acceleration in the vertical direction with a minimum safety factor of 2, in the event of a crash. Rose-Hulman Institute of Technology (RHIT) elected to base their energy storage system off of A123 battery modules (7×15s2p) and components. The design included a thermal analysis for various drive cycles and a mechanical analysis of the enclosure built to support and protect the battery modules. The thermal analysis investigated passive cooling versus active cooling and, after identifying active cooling as the best strategy, an appropriately sized cooling loop was developed. The mechanical analysis involved the use of Siemens NX7.5 to develop CAD models for the ESS enclosure components.
X