Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of the Ratio Between Connecting-rod Length and Crank Radius on Thermal Efficiency

2006-11-13
2006-32-0098
In reciprocating internal combustion engines, the Otto cycle indicates the best thermal efficiency under a given compression ratio. To achieve an ideal Otto cycle, combustion must take place instantaneously at top dead center, but in fact, this is impossible. Meanwhile, if we allow slower piston motion around top dead center, combustion will be promoted at that period; then both the in-cylinder pressure and degree of constant volume will increase, leading to higher thermal efficiency. In order to verify this hypothesis, an engine with slower piston motion around top dead center, using an ideal constant volume combustion engine, was built and tested. As anticipated, the degree of constant volume increased. However, thermal efficiency was not improved, due to increased heat loss.
Technical Paper

Study on the Fuel Spray and Combustion of the Variable Orifice Nozzle (VON) for Direct Injection Diesel Engines

2000-03-06
2000-01-0941
The government has been imposing a stricter diesel engine efficiency standard to reduce carbon dioxide, NOx and other particulate emissions. Diesel combustion improvement is a major concern, and many researchers have examined diesel combustion and its sprays. One possible method to solve the technical problems is applying the Variable Orifice Nozzle (VON) to fuel injection systems. The VON, which nozzle cross-sectional area is changed continuously, has been developed for direct injection (DI) diesel engines. The orifice changing mechanism is composed mainly of a rotary valve, drive shaft and small pulse motor. The VON's standard deviation (SD) of injection quantity in injection pump operation range is the same as the conventional hole nozzle's due to the rotary valve that is fixed by a spring. The smaller orifice of the VON has produced a higher injection pressure and produced a longer injection duration than that of a larger orifice.
X