Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A Model to Assess the Benefits of an After-Market Hybridization Kit based on Realistic Driving Habits and Charging Infrastructure

2013-09-08
2013-24-0086
Despite the recent commercial success of HEVs, their market share is still insufficient to produce a significant impact on energy consumption on a global basis. Moreover, it is unlikely that, in next few years, the scenario will drastically change, since relevant investments on production plants would be needed and the market does not seem to provide the expected growth for such technologies. Therefore, the possibility of upgrading conventional vehicles to hybrid electric vehicles is gaining interest. Among the diverse options for hybridization, researchers are focusing on electrification of rear wheels in front-driven vehicles, by adopting in-wheel motors and adding a lithium-ion battery. Thus, the vehicle is transformed in a Through-The-Road parallel hybrid electric vehicle. This paper presents an energy-based model, developed in Matlab/Simulink environment, of a conventional vehicle hybridized by means of such conversion kit.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
X