Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Understanding Measured Spindle Loads Differences with Advanced Tire Model

2010-04-12
2010-01-0378
In this study, a full vehicle with advanced LMS comfort and durability tire (CDT) model was established with ADAMS software to predict the spindle loads of the vehicle under a severe proving ground rough road event. From a series of simulations with various design changes, the spindle loads sensitivities to those design changes were identified. The simulated results were also compared with the measured data and a good correlation was achieved.
Technical Paper

Shock Absorber Force and Velocity Sensitivity to Its Damping Characteristics

2007-04-16
2007-01-1349
In this study, a full vehicle with durability tire model established with ADAMS is applied to simulate the dynamic behavior of the vehicle under severe rough road proving ground events, where the shock force-velocity characteristics are modeled as nonlinear curves and multi-stage representations, respectively. The shock forces and velocities at each corner are resolved and through full factorial DOE, the shock forces and velocities response surface models are established to analyze the sensitivities of shock force and velocity to the shock damping characteristics.
Technical Paper

Vehicle Cradle Durability Design Development

2005-04-11
2005-01-1003
In this paper, cradle design functional objectives are briefly reviewed and a durability development process is proposed focusing on the cradle loads, stress, strain, and fatigue life analysis. Based upon the proposed design process, sample isolated and non-isolated cradle finite element (FE) models for a uni-body sport utility vehicle (SUV) under different design phases are solved and correlated with laboratory bench and proving ground tests. The correlation results show that the applied cradle models can be used to accurately predict the critical stress spots and fatigue life under various loading conditions.
Technical Paper

In-Plane Flexible Ring Tire Model Development for Ride Comfort & Braking/Driving Performance Analysis under Straight-line Driving Condition

2015-04-14
2015-01-0628
Vehicle tire performance is an important consideration for vehicle handling, stability, mobility, and ride comfort as well as durability. Significant efforts have been dedicated to tire modeling in the past, but there is still room to improve its accuracy. In this study, a detailed in-plane flexible ring tire model is proposed, where the tire belt is discretized, and each discrete belt segment is considered as a rigid body attached to a number of parallel tread blocks. The mass of each belt segment is accumulated at its geometric center. To test the proposed in-plane tire model, a full-vehicle model is integrated with the tire model for simulation under a special driving scenario: acceleration from rest for a few seconds, then deceleration for a few seconds on a flat-level road, and finally constant velocity on a rough road. The simulation results indicate that the tire model is able to generate tire/road contact patch forces that yield reasonable vehicle dynamic responses.
X