Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Inside-Out Approach to Energy-Efficient Process Cooling

2007-04-16
2007-01-1337
The cooling of equipment and products is an integral part of many manufacturing processes. This paper describes typical process cooling systems used in manufacturing and the approximate cost of cooling for each system. The paper then describes the inside out approach to energy efficiency, which recommends sequential evaluation of end use, distribution and primary energy conversion systems, as it relates to process cooling. General methods for improving the energy efficiency of cooling processes, organized according to the inside-out approach, are described. These methods include adding insulation and heat exchangers, improving process control, avoiding mixing, employing variable-speed and low friction pumping systems, and using cooling towers in place of chillers. The fundamental equations for estimating savings, and examples, are presented for these methods.
Technical Paper

Measuring Plant-Wide Energy Savings

2006-04-03
2006-01-0596
This paper presents a general method for measuring plant-wide industrial energy savings and demonstrates the method using a case study from an actual industrial energy assessment. The method uses regression models to characterize baseline energy use. It takes into account changes in weather and production, and can use sub-metered data or whole plant utility billing data. In addition to calculating overall savings, the method is also able to disaggregate savings into components, which provides additional insight into the effectiveness of the individual savings measures. Although the method incorporates search techniques and multi-variable least-squares regression, it is easily implemented using data analysis software. The case study compared expected, unadjusted and weather-adjusted savings from six recommendations to reduce fuel use. The study demonstrates the importance of adjusting for weather variation between the pre- and post-retrofit periods.
Technical Paper

Energy Efficient Process Heating: Insulation and Thermal Mass

2006-04-03
2006-01-0835
Open tanks and exterior surfaces of process heating equipment lose heat to the surroundings via convection, radiation, and/or evaporation. A practical way of reducing heat loss is by insulating or covering the surfaces. This paper presents methods to quantify heat loss and energy savings from insulating hot surfaces and open tanks. The methods include radiation and evaporation losses, which are ignored by simplified methods. In addition, thermal mass, such as refractory, conveyor and racking equipment, acts as a heat sink and increases heating energy use in process heating applications. This paper presents lumped capacitance and finite-difference methods for estimating heat loss to thermal mass, and savings from reducing this loss. The methods described above have been incorporated in free software, and are demonstrated using case study examples. The examples demonstrate the magnitude of the potential error from using simplified methods.
Technical Paper

Energy Efficient Process Heating: Managing Air Flow

2006-04-03
2006-01-0832
Much energy is lost through excess air flow in and out of process heating equipment. Energy saving opportunities from managing air flow include minimizing combustion air, preheating combustion air, minimizing ventilation air, and reconfiguring openings to reduce leakage. This paper identifies these opportunities and presents methods to quantify potential energy savings from implementing these energy-savings measures. Case study examples are used to demonstrate the methods and the potential energy savings. The method for calculating savings from minimizing combustion air accounts for improvement in efficiency from increased combustion temperature and decreased combustion gas mass flow rate. The method for calculating savings from preheating inlet combustion air consists of fundamental heat exchanger and combustion efficiency equations. This method accounts for the reduction of combustion air flow as fuel input declines, which is often neglected in many commonly-used methods.
X